透過您的圖書館登入
IP:216.73.216.221
  • 學位論文

金屬離子和微藻之間的作用對藻類細胞在超聲波破壁成效上的影響

The effect of interaction between metal ion and microalgae toward the performance of algal cell disruption by ultrasonication

指導教授 : 李篤中

摘要


超聲波震盪是一個低能源效率的細胞破碎程序。此研究的目的是找出金屬離子與藻類細胞間的作用對於超聲波細胞破碎成效上的影響。在此我們假設三個因素會影響成效: 細胞和微泡之間的相對距離基於靜電力作用的影響,聚集體的大小,聚集體的結構。為了確認影響成效的主要因素是哪一個,我們將鉀離子,鈣離子和鋁離子去和培養於BBM培養基的小球藻去做反應,接者將其利用超聲波震盪進行細胞破碎。未和離子做反應的藻用來做對照組。三種指標用來判定超聲波破壁的成效: 超聲波震盪後葉綠素a 和化學需氧量增加的量,以及利用螢光染色試驗所得的細胞破碎程度。從結果中我們可以看到細胞碎程度由大到小有下列趨勢: 鉀離子組 > 控制組 > 鈣離子組 > 鋁離子組之樣品。我們可以推論藻類表面和微泡的電性對於成效的影響不大,但大的生物聚集體和緻密的結構造成效率的下降。我們假設微泡不能有效地產生載緻密的結構當中,致使低下的細胞破碎效率。

並列摘要


Ultrasonication is a cell disruption process at low energy effeciency. The goal of research here is to find the effect of interaction between metal ion and microalgae toward the performance of cell disruption by ultrasonication .Three factors were assumed to affect the performance here : relative proximity of the bubble to the cell based on electrostatic effect, size of aggregates and structure of aggregates. To check which factor above is dominant one, we dosed K+,Ca2+,Al3+ to chlorella vulgaris cultured in Bold’s Basal Medium at 25oC, followed by measuring degree of disruption after ultrasonication. The one without dosing is used as control.. Three indicators : increase of Chla & COD after sonication, degree of cell disruption by SYTOX fluorescence staining test were used to quantify the degree of disruption. In the result the degree of cell disruption follow : K+ > Control > Ca2+ >Al3+ sample. We can deduce that surface charge of cell and microbubble have small effect on the disruption efficiency, however; cell aggregate with large size and compact interior have low efficiency. We hypothesize that microbubble could not be effective generated inside compact aggregate, which lead to low cell disruption efficiency.

參考文獻


Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427. doi: http://dx.doi.org/10.1016/j.foodres.2012.05.004
Balasundaram, B., & Pandit, A. (2001). Selective release of invertase by hydrodynamic cavitation. Biochemical Engineering Journal, 8(3), 251-256.
Becker, W., & Richmond, A. (2004). Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. Handbook of microalgal culture: biotechnology and applied phycology, 380-391.
Benemann, J. R. (2009). Microalgae biofuels: a brief introduction. Benemann Associates and MicroBio Engineering, Walnut Creek, CA.
Bosma, R., van Spronsen, W. A., Tramper, J., & Wijffels, R. H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15(2-3), 143-153.

延伸閱讀