透過您的圖書館登入
IP:18.118.207.174
  • 學位論文

利用類神經網路於輔助膝部動脈血管之MRA影像辨識

Identification of Knee Artery in MRA Images Using Neural Networks

指導教授 : 張璞曾
共同指導教授 : 施庭芳

摘要


血管攝影方式目前分成侵入式(invasive)和非侵入式(non-invasive)兩種,而磁振血管造影(magnetic resonance angiography, MRA)具備非侵入式的優點,所以較易為人所接受,目前臨床上患者多透過MRA來做為血管診斷的先期篩檢。由於國人飲食生活的改變,罹患糖尿病的比例有增高的趨勢,而糖尿病患者多伴隨有下肢周邊血管動脈阻塞的現象,所以透過MRA我們可以清楚瞭解糖尿病患者下肢動脈形態,自主幹至分枝由粗而細,狹窄栓塞及阻塞之處。本論文則是針對MRA之下肢膝部動脈血管影像,嘗試利用二維結構之SOM(Self-Organizing Map)、LVQ(Learning Vector Quantization)類神經網路對膝部動脈血管拓樸形態之辨識,期能作為先期快速篩檢、輔助醫生診斷的工具,証實經過3組PAOD(peripheral arterial occlusive disease)病患和1組正常人影像,共計20張不同角度的影像的實例測試,辨識率高達85%,確實能有效診斷,並作為專家診斷系統並縮短病人等檢查報告時間,有助於整體醫療技術的改善及增進整體醫療的效率。

並列摘要


The ways of angiography are divided into two kinds at present: the invasive type and the non invasive type. Because the magnetic resonance angiography (MRA) has advantages of the non invasive type, thus people can accept MRA more easily. Presently, to diagnoses for the initial stage triage of the blood vessel on clinic by MRA mostly. We to be allowed to see clearly that the shape of lower limb artery which like the dendrite and the blood vessel is thick from the trunk to the thin branch, also we can see the narrow embolism and the blocked place through MRA. This study is aiming at the image of artery of blood vessel by MRA assay, and is attempting to use two-dimensional structure of SOM and LVQ to make out topologies for the shape of artery of blood vessel. We expect that MRA could be useful tools for earlier on the quick triage and auxiliary diagnosis of doctors. By actual examples truly prove that patients after peripheral arterial occlusive disease (PAOD) treatment can diagnose effectively, shorten the time of patients waiting for reports and improve the whole efficiency of the medical treatment system.

並列關鍵字

MRA SOM LVQ PAOD

參考文獻


1. Torsten B.Moeller, Emil Reif, ”Pocket Atlas of sectional anatomy CT and MRI Volume 2”
5. Sung-Bae Cho; ”Neural-Network Classifiers for Recognnizing Totally Unconstrained Handdwritten Numerals”,
6. Miyanaga, Y.; Hong Lan Jin; Islam, R.; Tochinai, K.; ”A self-organized network with a supervised training”
Circuits and Systems, 1995. ISCAS '95., 1995 IEEE International Symposium on Volume 1, 28 April-3 May 1995 Page(s):482 - 485 vol.1
7. Jing Wu; Hong Yan; ”Combined SOM and LVQ Based Classifiers for Handwritten Digit Recognition”

被引用紀錄


林品喬(2013)。利用影像處理與類神經網路進行人體坐姿判讀〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.01632

延伸閱讀