表面電漿子共振(Surface Plasmon Resonance, SPR)現象,是一由20世紀初即發現,但一直到20世紀90年代才真正有發展及應用之技術。其原理是以SPR原理檢測生物、化學感測晶片上之受體及受質之間之交互作用情況,此特性後來又被廣泛應用於許多領域。SPR早在1971年Kretschmann為其作為感測器的結構奠定了基礎,也拉開了技術發展以及應用的序幕。到了1984年,Pharmacia Biosensor AB公司成立,並於1990年開發了首台SPR儀器,而後,在1996年改名為大家所熟知的Biacore也是現今全世界擁有最多SPR相關專利的公司。 現今SPR廣泛用於生命科學、醫療檢測、藥物篩選、食品檢測、環境監測、法醫鑑定及藥物動力學。本研究採用了創新的機械掃描設計,開發了基於Kretschmann光學架構的SPR傳感器,並導入自動化設計以增加SPR量測過程的便利性,以及透過流道的改善提供實驗更穩定的流體,並且將機台本身的空間運用、性能及成本最佳化。 在晶片製作的方面,本篇論文也提出不同於以往的設計方式,新設計的晶片結合了體積較一般傳統所使用的稜鏡大,大幅減低誤差;以及利用高分子材料取代BK7之材質,降低SPR角的位置,以減去光源入射後到接收在大角度時的變形量;在晶片及稜鏡結合後,也在晶片後方設計一個定位柱以利量測時可得到最佳位置。 在自動化方面,本研究設計了一種連桿機構,以馬達銜接滾珠螺桿推動連桿,以達到自動化以及左右雙臂同動之效果,並且在其中探討設計最佳化等問題,求得一個最佳範圍的解,並在此範圍之中找到適合的零組件,同時考慮成本、空間及設計最佳化。在流道方面本文比較了數種不同設計,最終採取上蓋下壓後流道腔體即為封閉空間的上蓋式流道,以便直接通入待測液體,節省量測時間。本論文探討上述提及之問題點,藉由改良機構,最終達到機電整合及架構上的創新。
Surface plasmon resonance (SPR) is a phenomenon that was discovered in the early 20th century, but it was not commercialized until the 1990s. As early as 1971, Kretschmann built the optical configuration that enabled SPR to become a sensor, and also opened the chapter for technological development and application. In 1984, Pharmacia Biosensor AB was founded, and developed the first SPR instrument in 1990. Then, in 1996, Pharmacia Biosensor AB changed the name to Biacore, which is the company with the most SPR-related patents in the world today. SPR technology is to detect the interaction between receptors and analytes on sensing chip, and is widely applied to life sciences, medical testing, drug screening, food testing, environmental monitoring, forensic identification and pharmacokinetics. In this study, based on the Krestchmann configuration, we introduced an automatic mechanical scanning design to facilitate the SPR measurement process. To improve the flow channel, we chose a cap to seal the flow channel, which enables fluidics in the chamber to be more stable. In terms of chip fabrication, the new prism is larger than the old design. The replacement of the material BK7 with a polymer material decreases the SPR angle, the distortion of the SPR image is thus minimized. After the chip and prism are combined, we designed a positioning column to help obtain its best position. We also designed a linkage mechanism by using a motor to connect the ball screw and to drive the connecting bars, thus achieving automation and the achievement of the two supported arms move within the same angle. Under the proposed design, suitable components considering cost and size in an optimal range of the solution was fulfilled. To sum up, this study establishes an improved SPR system that has the possibility of bringing impact to the biosensor field.