透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

使用深度學習與虛實整合系統之工業數據分析用例推薦

Use-Case Recommendation for Industry Data Analytics by Deep Learning and Cyber-Physical System

指導教授 : 張瑞益
共同指導教授 : 黃維信(Wei?Shien Hwang)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


為了達到資源優化、品質提升、靈活生產,工業4.0希望能智慧轉型,以工業數據分析創造更高的價值。然而,不同的工廠有不同的工業數據分析需求,新的需求與技術也不斷發生,使得解決問題的專家十分稀缺。本研究探討如何使用智慧推薦技術,解決不同的工業數據分析需求。我們透過蒐集網路上的相關技術文獻,針對文獻的標題、摘要與關鍵字,使用深度學習中包括長短期記憶 (Long Short-Term Memory, LSTM)模型進行訓練,提出一個工業數據分析用例推薦系統。本研究參考虛實整合系統的5C架構 (Smart Connection Level、Data-to-Information Conversion Level、Cyber Level、Cognition Level、Configuration Level),實際建置一個巨量資料平台以蒐集工業數據,提供資料分析、資料視覺化與動態儀表板,當使用者輸入其問題需求之描述文字,本系統嘗試找出適合的用例,並自動推薦系統之相關資料分析模型;同時參考虛實整合系統的5C架構,提出一個工業設備知識關係流程,用以找出設備與設備間的知識關係,建立工業設備詞向量模型以利用例推薦。

並列摘要


To achieve resource optimization, quality improvement, and flexible production line, Industry 4.0 hopes to intelligently transform and create higher value through industrial data analysis. However, different factories have different requirements of industrial data analysis, new requirements are constantly occurring, and experts who can solve problems are scarce. This research explores how to provide users with an intelligent recommendation solution to meet different problem needs. We propose a use-case recommendation system of industrial data analysis by collecting academic papers (with titles, abstracts, and keywords) on the Internet and using deep learning (with the Long Short-Term Memory (LSTM) model). This study refers to the 5C architecture (Smart Connection Level, Data-to-Information Conversion Level, Cyber Level, Cognition Level, and Configuration Level) of the Cyber-Physical System, and builds a big data platform to collect industrial data, provide data analysis, data visualization, and dynamic dashboards. When users enter descriptive text of their problem, the system attempts to find out suitable use-cases and automatically recommend the relevant data analysis model of the system. According to the 5C architecture of the Cyber-Physical System, an industrial equipment knowledge relationship process is proposed to find out the knowledge relationship between equipment and equipment, and establishes a vector model of industrial equipment for use-case recommendation system.

參考文獻


[1] 積極推動"生產力4.0發展方案",打造下世代智慧台灣基盤. (n.d.). Retrieved January 25, 2020, from https://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=11629
[2] 詹長霖文章|【詹長霖】三張圖看懂各國工業4.0發展!-創新智庫暨企業大學. (n.d.). Retrieved January 25, 2020, from https://www.ceu.org.tw/proArticle_content.asp?ano=1586
[3] Edge AI助力智慧製造發展,2022年市場規模逼近3,700億美元. (2019, August 14). Retrieved January 25, 2020, from https://www.topology.com.tw/DataContent/release/Edge%20AI助力智慧製造發展,2022年市場規模逼近3,700億美元/486
[4] 資策會 40 週年專網|紡織業專題. (n.d.). Retrieved January 25, 2020, from https://40th.iii.org.tw/textile-industry
[5] 財團法人資訊工業策進會 . (n.d.). 台灣電路板協會、研華、迅得 聯手資策會及工研院共組PCB國家聯盟隊 推動共同通訊協定、智慧製造技術平台 促產業升級朝向工業4.0邁進: 本會新聞: 資策會. Retrieved January 25, 2020, from https://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=1964&fm_sqno=14

延伸閱讀