透過您的圖書館登入
IP:3.144.229.52
  • 學位論文

二維直線上多個中心的設置問題

Computing the line-constrained k-center Problem in the plane for small k

指導教授 : 趙坤茂

摘要


給定一個點集合和一條直線L,求出k個設施在L上的最佳位置, 使得所有點與最近設施的距離中的最大值為最小。我們稱以上問題為 二維直線上多個中心的設置問題。對任意的常數定值k,我們利用削減 與搜尋的方法解此問題,且此演算法的時間複雜度為O(n)。

並列摘要


In this thesis, we study the line-constrained k-center problem in the Euclidean plane. Given a set of demand points and a line L, the problem asks for k points, called center facilities, on L, such that the maximum of the distances between the demand points to their closest center facility is minimized. For any fixed k, we propose an algorithm with running time linear to the number of demand points.

參考文獻


[1] P. K. Agarwal and M. Sharir. Planar geometric location problems. Algorithmica,
11(2):185–195, 1994.
[2] P. K. Agarwal, M. Sharir, and E. Welzl. The discrete 2-center problem. Discrete and
Computational Geometry, 20(3):287–305, 1998.
[3] B. Ben-Moshe, B. Bhattacharya, and Q. Shi. An optimal algorithm for the continuous/

延伸閱讀