透過您的圖書館登入
IP:216.73.216.150
  • 學位論文

複雜背景下多相機之多目標物影像追蹤系統

Multiple People Visual Tracking in a Multi-Camera System for Cluttered Environment

指導教授 : 傅立成

摘要


本論文發展於多相機之複雜環境中,多人物追蹤及身份辨識都在此論文中提出。本篇論文主要分成二部分:第一部分著力於單個相機的環境下,如何成功追蹤多個人物,而第二部分是在單相機系統的基礎上,於多相機之環境中對多個人物做追蹤。 在單相機環境下之多個人物追蹤系統中,首先我們利用運動偵測器及橢圓頭部偵測方式去偵測有無人物進入監控範圍中,於偵測人物後,利用模板比對以及橢圓演算法持續追蹤此人物。此外,為避免在多個人物交錯時因影像相似度過高而導致追蹤失敗的情況發生,我們引進軌跡預測的概念,在此基礎之上,提出了聯合影像機率資料結合濾波器。 在多相機環境下之多個人物追蹤系統中,如何在多個不同的影像平面中,判斷是否為同一個人物,進而對此人物作大範圍持續追蹤是最重要的部分,當有新人物進入其中一個相機的監控畫面中,我們利用影像上的特徵(影像上的位置及衣服的顏色)判斷是否為一個新人物或在其他相機出現過的人物,緊接著利用第一部分的追蹤演算法對人物做後續追蹤。 最後,透過實驗來驗證單相機之多目標物影像追蹤系統及多相機之多目標物影像追蹤系統之可靠性和可行性。

並列摘要


This thesis aims to track multiple people in a multi-camera system for cluttered environment which can be divided into two important parts: one is tracking multiple people in a single camera environment, and the other is tracking multiple people in a multi-camera environment. In a single camera environment, we apply the motion detector and the ellipse algorithm to detect a new person intruding the surveillance area. Then, we utilize the template matching and the ellipse matching to track the person. To prevent tracking failure tracking when people cross over each other, we include the hereby proposed Joint Visual Probabilistic Data Association filter (JVPDA filter) to track multiple people successfully. In a multi-camera environment, the major problem is to determine whether the new person intruding into some surveillance area of a camera is an identified person by some other camera or not. To resolve the aforementioned problem, we propose an approach called consistence labeling. After such labeling process, we track this person by the JVPDA algorithm. Finally, effectiveness of this tracking algorithm is validated via extensive experiments.

參考文獻


[4] A. M. Peacock, S. Matsunaga, D. Renshaw, J. Hannah, and A. Murray, “Reference Block Updating When Tracking with Block Matching Algorithm,” Electronics Letters 17th, Vol. 36, No.34, pp. 309-310, Feb. 2000.
[5] C. Haworth, A. M. Peacock, and D. Renshaw, “Performance of Reference Block Updating Techniques When Tracking with the Block Matching Algorithm,” Proc. of Int. Conf. on Image Processing, Vol. 1, pp. 365-368, 2001.
[6] S. Birchfield, “An Elliptical Head Tracker,” 31st Asilomar Conf. on Signals, Systems, and Computers, Nov. 1997.
[7] S. Birchfield, “Elliptical Head Tracking Using Intensity Gradiants and Color Histograms,” IEEE Conf. on Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 232-237, July 1998.
[8] S. B. Colegrove and S. J. Davey, “The Probabilistic Data Association Filter with Multiple Nonuniform Clutter Regions,” IEEE Int. Radar Conf., pp. 65-70, 2000.

延伸閱讀