中文摘要 實驗目的 迷你植體在使用上有其優勢,像是手術侵犯性較小,甚至在達到一定條件後,植體可以考慮立即荷重(immediate loading)。因此植體植入後是否可到達足夠的植入扭力值,提供植體的初期穩定度,同使避免植入扭力值過大,造成植體斷裂的風險,便相當重要。植入扭力值會受到骨質(bone quality)、植體的大小形狀、表面處理、手術的方法影響。因此本篇文章便想試著去探討在不同的骨質情況下,可否建立出一套標準的鑽孔規則來達成預期之扭力值。 實驗材料與方法 在artifical test blocl的實驗中,我們以SawboneR test block做為實驗材料,並選擇不同的密度(10、20、30 pcf分別代表0.16、0.32、0.48 g/cc)來模擬不同骨密度的海綿骨,並以50 pcf(0.80 g/cc)之1~2 mm的薄層覆蓋在test block上以模擬不同厚度之皮質骨,並以直徑1.1 mm、1.5 mm的鑽針做出不同深度之預鑽孔,設定不同之鑽孔規則如下,其中1.1(數字1)-1.5(數字2),代表以1.1 mm的鑽針,鑽到(數字1)mm的深度,再以1.5 mm的鑽針,鑽到(數字2)的深度。 ★ 1.1(4); ★ 1.1(7); ★ 1.1(10); ★ 1.1(13); ★ 1.1(4)-1.5(4);★ 1.1(7)-1.5(7);★ 1.1(10)-1.5(10); ★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 一開始先以1.1(4)的方法做預鑽孔,然後將迷你植體(MDI,mini dental implant,IOB-13,Sendax 3M USA) 植入模擬不同骨質情況下的test block,並在植體植入過程中,每前進0.5 mm便去紀錄其扭力值,若扭力值大於45 N,則使用較深或是預鑽孔直徑較大的鑽孔規則來測試,每一個鑽孔規則皆重複五次。 在豬髂骨的模型中,首先將其粗略的分成皮質骨厚度0~1、1~2、2~3 mm的組別,而鑽孔規則如下: ★ 1.1(4);★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 每一個鑽孔規則皆測試至少五次,而植體植入過程中,植體每前進0.5 mm便會紀錄其扭力值的變化。而之後便會將豬髂骨進行電腦斷層掃描,以測量其皮質骨厚度以及分類骨質。 實驗結果 在人工骨模型中,10 pcf在不同皮質骨厚度的test block中,即使用最保守的鑽孔規則1.1(4),其ITRF(final insertion torque of rough surface )皆不超過35 Ncm,而在30 pcf與lamination 0~2 mm的test block中,其ITRF皆超過50 Ncm,因此需要將預鑽孔的深度加深或是直徑擴大,才有辦法達成理想之植入扭力。而也發現,將預鑽孔的直徑擴大似乎比加深深度,要來的有效率降低植入扭力。 在豬髂骨的模型中,皮質骨厚度”0~1 mm”的組別中,即使用最保守的鑽孔規則,其ITRF不超過35 Ncm,而在”1~2 mm”,”2~3 mm” 的組別中,配合不同鑽孔規則,似乎可將ITRF控制在理想範圍35~45 Ncm內,但整個植入過程中的最大扭力值可能超過45 Ncm。 結論 在不同的骨質條件下,應配合不同的鑽孔規則來控制植入扭力,以避免植體斷裂,以及達成理想之扭力值,提供植體足夠之初期穩定度。 關鍵詞:迷你人工牙根、植入扭力值、鑽孔規則
Abstract Research goal The purpose of this study was to investigate the insertion torque of 2.1 mm diameter MDI implants placed with different drilling protocols in artificial bone blocks of different qualities,and in ilium bone of pig. Material and method <Artificial test block> Low to high density cancellous bone without cortical coverage were simulated using 10 pounds per cubic foot (pcf) (density: 0.16 g/cc), 20 pcf (0.32 g/cc), and 30 pcf (0.48 g/cc) polyurethane foam test blocks. Cancellous bone with a thin layer of cortical bone were simulated with laminated test blocks using a combination of 1 or 2 mm 50 pcf (density: 0.80 g/cc) polyurethane layer on 10, 20, and 30 pcf blocks. After a site preparation, mini implants (MDI,mini dental implant,IOB-13,Sendax 3M USA) were inserted into the testing blocks and insertion torque was recorded with every 0.5 mm implant advancement. In each type of test blocks, we explored the optimal drilling protocol by drilling with 1.1 mm drill in 4 mm depth first and testing the MDI insertion torque, and sequenced drilling protocols of a deeper drilling depth or a larger diameter (1.5 mm) drilling were only tested if the insertion torque was greater than 45 Ncm. Each drilling protocol was repeated for 5 times. Sequenced drilling protocols tested were listed below. The “1.1(number 1)-1.5(munber 2)” mean using the 1.1 diameter drill to the depth of (munber 1) mm, then using the 1.5 mm diameter drill to the depth of (munber 2) mm : ★ 1.1(4); ★ 1.1(7); ★ 1.1(10); ★ 1.1(13); ★ 1.1(4)-1.5(4);★ 1.1(7)-1.5(7);★ 1.1(10)-1.5(10); ★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 <ilium bone> In the ilium bone block test,the bone was sorted by cortical bone thickness roughly, and devided into 0~1, 1~2, 2~3 mm groups. Drilling protocol tested were listed below: ★ 1.1(4);★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 Each drilling protocol was repeated for 5 times, and insertion torque was recorded with every 0.5 mm implant advancement .And the bone block would use the CT scan to check the accurate cortical bone thickness and HU value for bone quality. Result: In the test block with density of 10 pcf and 0~2mm lamination, the final insertion torquefo rough surface(ITRF)would not exceed 35 Ncm, even with the most conservative site preparation of 1.1 mm drilling in 4 mm depth. In the block with density of 30 pcf and 0~2mm, the insertion torque was beyond 50 Ncm before the implant fully seated and a deeper or wider site preparation was needed. In these tested blocks, it was observed that deeper drilling usually could not reduce the insertion torque efficiently and a larger diameter preparation to reduce to insertion torque was needed. In the test group of pig ilium bone, the ITRF of 0~1 mm group did not reach 35 Ncm, even using the most conservative protocol. In the 1~2 and 2~3 mm group, the ITRF could control in the range of 35~45 Ncm when using different protocol, but during the procedure of placement, the the maximum ITR(insertion torque of rough surface) may beyoud 45 Ncm, it should be noted. Conclusion: The data suggest that drilling protocols can be and should be developed according to different bone quality for MDI implants to avoid implant fracture and achieve ideal insertion torque. Key word:Mini dental implant、insertion torque、drilling protocol.