在本論文中,我們提出了一個批次演算法Q-EM和一個線上算法Q-Soft-Bayes,用於計算最大概似量子態估計量。Q-EM可以看作是泊松逆問題中期望最大化演算法(expectation maximization, EM)的量子延伸。Q-Soft-Bayes可以被視為Soft-Bayes的量子延伸,這是一種用於線上投資組合選擇的演算法。假設要估計的量子態對應於\(D\times D\)的密度矩陣,並且有\(N\)個測量結果。對於Q-EM,其每次迭代的計算複雜度為\(O(ND^2 + D^3)\);它的最佳化誤差以\(O(T^{-1}\log D)\)的速率遞減至0,其中\(T\)表示迭代次數。對於Q-Soft-Bayes,其每次迭代的計算複雜度為\(O(D^3)\),與測量次數無關;它的最佳化誤差以\(O(\sqrt{\frac{D \log D}{T}} + \sqrt{\frac{(\log T + \log D)^2\log \frac{1}{\delta}}{T}})\)的速率遞減至0,機率至少為 \(1-\delta\),其中\(T\)表示迭代次數。我們進一步將Q-Soft-Bayes延伸到小批量(mini-batch)的Q-Soft-Bayes,它在每次迭代中處理\(B\)個資料點。小批的量Q-Soft-Bayes的每次迭代計算複雜度為\(O(BD^2 + D^3)\),與測量次數無關;它的最佳化誤差以\(O(\sqrt{\frac{D \log D}{T}} + \sqrt{\frac{(\log T + \log D)^2\log \frac{1}{\delta}}{TB}})\)的速率遞減至0,機率至少為 \(1-\delta\),其中 \(T\) 表示迭代次數。
In this thesis, we propose a batch algorithm, Q-EM, and an online algorithm, Q-Soft-Bayes, for maximum likelihood quantum state tomography. Q-EM can be seen as a quantum extension of the expectation maximization (EM) algorithm in Poisson inverse problems. Q-Soft-Bayes can be viewed as a quantum extension of Soft-Bayes, a recent algorithm for online portfolio selection (Orseau et al. (2017). “SoftBayes: Prod for Mixtures of Experts with LogLoss”. Int. Conf. Algorithmic Learn. Theory). Suppose that the quantum state to be estimated corresponds to a \(D\)-by-\(D\) density matrix and that there are \(N\) measurement outcomes. For Q-EM, its per-iteration computational complexity is \(O(ND^2 + D^3)\); its optimization error vanishes at an \(O(T^{-1}\log D / T)\) rate, where \(T\) denotes the number of iterations. For Q-Soft-Bayes, its per-iteration computational complexity is \(O(D^3)\), independent of the number of measurements; its optimization error vanishes at an \(O(\sqrt{\frac{D \log D}{T}} + \sqrt{\frac{(\log T + \log D)^2\log \frac{1}{\delta}}{T}})\) rate with probability at least \(1-\delta\), where \(T\) denotes the number of iterations. We further extend Q-Soft-Bayes to mini-batch Q-Soft-Bayes, which processes \(B\) data points in each iteration. The per-iteration computational complexity of mini-batch Q-Soft-Bayes is \(O(BD^2 + D^3)\), independent of the number of measurements; the optimization error of mini-batch Q-Soft-Bayes vanishes at \(O(\sqrt{\frac{D \log D}{T}} + \sqrt{\frac{(\log T + \log D)^2\log \frac{1}{\delta}}{TB}})\) rate with probability at least \(1-\delta\), where \(T\) denotes the number of iterations.