透過您的圖書館登入
IP:18.218.110.116
  • 學位論文

圖的均勻邊切割問題

Uniform Edge-Partition of a Graph

指導教授 : 趙坤茂

摘要


當給定正整數 k 以及對於一個邊數為 n 的無向連通圖,我們關心的是把此圖的邊分割成 k 個連通子圖,使得每一部份的大小盡可能地均勻。在此篇論文以最大塊與最小塊的邊數比來當作衡量的標準。在此課題上,過去的文獻只探討當圖限制為樹的結構,且邊為無權重之情況。對於 k=2,3 及 4 的情況,已被證明最大塊與最小塊的邊數比可以保證在 2 以內。而對於任意的 k ,先前最佳的結果是保證最大塊與最小塊的邊數比在 3 以內。 此篇論文將圖推廣至一個邊有權重的任意連通圖。當每個邊的權重不超過平均權重的一半時,我們提出一個線性時間的演算法來得到此圖的邊切割,使得最大塊與最小塊的邊數比可以保持在 2 以內。此外,我們也藉由一個例證來說明邊權重的限制是最寬鬆的。

關鍵字

邊切割 點切割 圖切割 演算法 圖論

並列摘要


Given a positive integer k and an undirected edge-weighted connected simple graph G with n edges, where k ≤ n, we wish to partition the graph into k edge-disjoint connected components of approximately the same size. We focus on the max-min ratio of the partition, which is the weight of the maximum component divided by that of the minimum component. For k = 2,3, and 4, it has been shown that the upper bound of the max-min ratio of an unweighted tree is two. For any k, the best previous upper bound of the max-min ratio of an unweighted tree is three. In this thesis, for any graph with no edge of weight larger than one half of the average weight of a component, we provide a linear-time algorithm for delivering a partition with max-min ratio at most two. Together with the fact that the max-min ratio is at least two for some instances, we have that the max-min ratio upper bound attained in this thesis is tight. Furthermore, by an extreme example, we show that the above restriction on edge-weights is the loosest possible.

參考文獻


[3] E. Agasi, R. I. Becker and Y. Perl, A shifting algorithm for constrained min-max par- tition on trees, Discrete Applied Mathematics, Vol. 45, Number 1, pp. 1–28, 1993.
[4] R. I. Becker and Y. Perl, Shifting algorithms for tree partitioning with general weighting functions, Journal of Algorithms, Vol. 4, Number 2, pp. 101–120, 1983.
[5] R. I. Becker and Y. Perl, The shifting algorithm technique for the partitioning of trees, Discrete Applied Mathematics, Vol. 62, Number 1-3, pp. 15–34, 1995.
[7] R. I. Becker, B. Simeone and Y. Chiang, A shifting algorithm for continuous tree par- titioning, Theoretical Computer Science, Vol. 282, Number 2, pp. 353–380, 2002.
[9] R. Bordawekar, O. Shmueli, An algorithm for partitioning trees augmented with sibling edges, Information Process Letters, Vol. 108, Number 3, pp.136–142, 2008.

延伸閱讀


國際替代計量