透過您的圖書館登入
IP:216.73.216.30
  • 學位論文

K2,4,n之交叉數

The Crossing Number of K2,4,n

指導教授 : 陳文進

摘要


交叉數是一個圖,在平面上所有的畫法中,可以畫出最小的交叉數。在這篇論 文,根據Kleitman證明完全二分圖的結果,我們證明了對於所有的n, K2,4,n這個 完全三分圖的交叉數。最後,我們提出了關於K2,m,n交叉數的猜想。

並列摘要


The crossing Number $cr(G)$ of a graph $G$ is the smallest crossing number among all drawings of $G$ in the plane. In this paper, we determine the crossing number of the tripartite graph $K_{2,4,n}$ for any integer $n$. Our proof depends on Kleitman's results for the complete bipartite graphs. At last, we propose a conjecture of the crossing number of $K_{2,m,n}$.

參考文獻


[1] Daniel J. Kleitman. The crossing number of K5,n. J. Combinatorial Theory, 9:315–
323, 1970.
[2] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods, 4(3):312–316, 1983.
[3] Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in linear

延伸閱讀


國際替代計量