透過您的圖書館登入
IP:216.73.216.116
  • 學位論文

氧化鋅基金屬絕緣層半導體雙面發光元件之研究

ZnO-based metal-insulator-semiconductor double-side light-emitting devices

指導教授 : 陳永芳
本文將於2025/12/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文中,利用金屬-絕緣層-半導體(MIS)結構,改善傳統p-n同質接面二極體製作較困難的缺點,僅使用n型氧化鋅,使電子電洞對在絕緣層與氧化鋅界面復合發光,製作n型氧化鋅的發光元件;並利用透明電極與基板,使元件為雙面透光。本文包含三種MIS結構的氧化鋅發光元件,其一是以氧化鋅奈米柱與氧化鎂薄膜做出發光峰值波長在389奈米紫外波段元件,其二是利用旋塗氧化鋅奈米粒子與聚甲基丙烯酸甲酯(PMMA)做出發光波長涵蓋400奈米至750奈米以上的可見光元件,其三是利用單晶氧化鋅基板與極薄的二氧化矽薄膜做出發光峰值波長在375奈米紫外光波段的元件。而三種MIS元件中涉及之穿隧機制經由電流-電壓曲線加以探討。因此,這三種氧化鋅元件能夠藉由不同的材料與結構來得到紫外光或可見光波段的光,並且能夠有雙面透光之效果。

並列摘要


In this thesis, metal-insulator-semiconductor (MIS) structure is used to replace the common p-n junction structure LED in order to prevent the disadvantage of difficulties to fabricate p-type ZnO. N-type ZnO is only needed as the semiconductor for the devices. Electrons and holes recombine radiatively at the ZnO-insulator interface, thus the light emitting devices are obtained. Transparent electrodes and substrates are used to make the devices possess double-side emission. Three kinds of MIS light emitting devices are included in the thesis. One is a UV emission device with peak at 389 nm fabricated by ZnO nanorods and MgO film, another is a visible emission device ranges over 400nm to more than 750nm wavelength fabricated by ZnO nanoparticles and polymethylmethacrylate (PMMA), the other is also a UV emission device with peak at 375 nm fabricated by single-crystal ZnO and SiO2 film. In addition, the tunneling mechanism for three MIS devices are analyzed by current-voltage characteristics. We successfully demonstrate that all these three devices can emit UV or visible light with different materials and structures, and enable light emission from both sides of the devices.

並列關鍵字

MIS ZnO LED electroluminescence double-side tunneling

參考文獻


Chapter 1
[1] Choi, Y. S.; Kang, J. W.; Hwang, D. K.; Park, S. J., Recent advances in ZnO-based
light-emitting diodes. IEEE Transactions on Electron Devices 2010, 57 (1), 26-41.
[2] Liang, H. K.; Yu, S. F.; Yang, H. Y., Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Applied Physics Letters 2010, 96 (10), 101116.
[3] Soci, C.; Zhang, A. Xiang,; B. Dayeh,; S. A. Aplin,; D. P. R. Park,; J. Bao, X. Y.;

延伸閱讀