透過您的圖書館登入
IP:3.140.188.57
  • 學位論文

單晶片160Gb/s 16x16乙太交換機設計

Design of a Single Chip 160Gb/s 16x16 Ethernet Switch

指導教授 : 吳靜雄

摘要


乙太網路有許多好處譬如低成本和容易的設施。乙太網路廣泛地被大眾使用。因而, 它普遍為地區網路(LAN) 應用。隨著1Gbps 和10Gbps 乙太網路被大量採用,乙太網將在市區網路(MAN)以及大範圍網路(WAN)扮演重要角色。從前,只有20% 網路交通流量在骨幹網路上。但現在,因為客戶使用簡約型通信協定(lightweight protocol),多數網路交通流量是在骨幹網路或在骨幹網路和伺服器(server)之間。通信頻寬要求非常大。 但是,網路節點的封包交換速度跟不上先進光纖技術的傳輸速度。交換機和路由器成為高速網路瓶頸。光交換機非常適合使用在全光學高速網路所以受到了很多關注。由於缺乏高速光學隨機存取存儲裝置,光學交換機仍然只是在理論研究階段。雖然他們也許在將來變得實用,但在現今,大家所注目的仍然以電的交換機為主。也因為如此,許多電交換機被提出進而實現。 常見的交換機種類有:輸入佇列、輸出佇列、虛擬輸出佇列以及結合輸入輸出佇列。輸入佇列交換機很容易遇到排頭阻塞(Head of Line Blocking)效應,理論計算顯示流通率只能夠達到0.586;輸出佇列交換機如共享記憶體交換機,利用複雜的演算法來進行交換,交換頻寬遠低於記憶體頻寬;而結合輸入輸出佇列交換機可以在對記憶體頻寬要求較低的前提下,得到相同的流通量。 本篇論文主旨是在於我們用設計一單晶片高速網路的高效能交換機,並將其命名為台大四號(NTU-IV)交換機。在這個交換機中,我們利用多層閂式交換平面的架構,擁有能直接交換可變長度封包的能力,同時硬體複雜度低,並且採用模組化設計方便系統擴充。此交換機裡面不需要中央控制器,其交換機制是靠著其自選路由(self-routing)來完成,並且可以執行多點傳輸(multicast)的功能。經由模擬的結果顯示,此架構可以達到與輸出佇列相當的流通量,並且有效降低排頭阻塞效應。整個台大四號交換機的架構包含了:預先處理器,時序器,多層閂式交換平面,以及輸出佇列控制器,我們使用0.18微米超大型積體電路(VLSI) 技術來實現這個系統。 台大四號交換機有下列幾個主要的特點。第一個是採用了通道分組(channel grouping)的觀念,此觀念就是將整個交換機分成數個較小的交換機結構。如此一來,電路分割變得容易,可比較簡單擴充到更高的容量。再者,在每一級之間的內部傳輸電路協定採用了後級先向前級請求電路傳送封包,然後當前級收到了後級的請求訊號,就表示後級有能力接收。這樣後級電路就不用再送一個確認信號回前級,如此,整個的內部延遲會縮小,內部頻寬使用率也會增大。最後就是台大四號交換機可以執行多點傳輸的功能,為了能使其更加的有效率,我們提出了一個和特殊的架構來增加其資源使用率。 經由模擬與實測的結果顯示,台大四號交換機具有高流通量、低延遲等優點,再加上此架構擁有較低的硬體複雜度與高度的可擴充性,可以預見台大四號交換機將會有許多值得研究與發展的地方。

關鍵字

交換機

並列摘要


In this thesis, we propose and implement a novel high speed switch named NTU-IV switch which is based on multi-plane cross-bar switch fabric. This switch has low complexity and the ability to handle variable length packets asynchronously. In addition, our switch supports both unicast and multicast. The concept of modular design is embedded into the architecture of the NTU-IV Switch. Therefore the NTU-IV Switch has great scalability in port count and line-rate. Simulation results show that this switching architecture can eliminate head-of-line blocking (HOL blocking) effect and also emulate the performance of output queue (OQ) switch without the need of complicated contention resolution algorithm and arbiter. We use the 0.18 μm cell – library design flow to implement a 16x16 NTU-IV Switch prototype with a total switching capacity of 160 Gb/s. Our design flow includes behavior level (Verilog code), synthesis, place and route. It is shown that the switch has low delay and almost 100% throughput under uniform traffic condition.

並列關鍵字

switch variable length

參考文獻


[1]Jingshown Wu, Hsien-Po Shiang, Kun-Tso Chen, Hen-Wai Tsao,“Delay and Throughput Analysis of High Speed Variable Length Self-Routing Packet Switch,”HPSR 2002 Proceddings, May 2002, Kobe, Hyogo, Japan, pp. 314-318.
[2]Kun-Tso Chen and Jingshown Wu, “Analysis and Design of a Multicast Variable-Length Packet Switch,” IEICE Trans, Communication, Vol.E87-B, No.9, pp. 2659-2671, Sept. 2004.
[4]Hluchyj M.G.., Karol M.J., “Queueing in High-performance Packet Switching,” in IEEE JSAC., vol. 6 no. 9, Dec. 1988, pp. 1587-1597.
[5]M. J. Karol, M. G. Hluchyj, and A. P. Morgan, “Input versus Output Queueing on a Space-Division Packet Switch,” IEEE Trans. Commun., vol. Com-35, No. 12, Dec. 1987, pp. 1347-1356.
[6]N. McKeown, A. Mekkittikul, V. Anatharam, J. Walrand, “Achieveing 100% Throughput in an Input-queued Switch,” in IEEE Trans. Commun., vol. 47, No. 8, Aug. 1999,pp. 1260-1267.

延伸閱讀