透過您的圖書館登入
IP:18.189.188.113
  • 學位論文

層狀結構奈米複合材料於牙科填補之應用

Layered Structure for Advanced Dental Restorative Nanocomposite

指導教授 : 林唯芳

摘要


於本論文中,我們於奈米複合材料中導入具有層狀結構之材料,製備新穎奈米複合材料。藉由此層狀材料與奈米粒子形成相互支撐的微結構大幅提高奈米複合材料之機械強度。 雙酚液晶環氧樹脂應用於牙科填補環氧奈米複合樹脂的研究中發現到雙酚液晶環氧樹脂的結晶在光聚合過程中發生部分溶解的現象,藉由此有序-無序的相轉變而有效降低材料之聚合收縮度。在高二氧化矽奈米粒子含量時,殘留的雙酚液晶環氧樹脂結晶與二氧化矽奈米粒子形成一奈米粒子包覆層狀之微結構(NPEL),當此微結構生成時材料之硬度以及彎曲模數皆明顯提升。 於超疏水以及疏油之透明奈米複合材料的開發中,我們以TCDDA (tricyclodecane dimethanol diacrylate) 以及二氧化矽奈米粒子製備複合材料薄膜並利用不同尺寸的奈米粒子於奈米複合材料中構成奈米級的團簇結構。之後以氧電漿蝕刻奈米複合材料表面使其粗糙化並使奈米顆粒曝露於表面。最後將氧電漿處理後的奈米複材以浸鍍 (dip-coating) 的方式於曝露之二氧化矽奈米顆粒表面鍍上氟碳偶合劑PFDTMES (1H,1H,2H,2H-perfluorodecyl trimethoxysilane)。我們藉著三步驟製程達製備了具備了超疏水及高疏油性之透明奈米複合材料,於此研究中確立了以氧電漿曝露於奈米複合材料表面之二氧化矽奈米粒子能再次以溶膠凝膠法(sol-gel process)進行表面改質,賦予材料新的特性。 我們以原子層沉積(atomic layer deposition, ALD)於奈米複合材料表面分別製備二氧化鋯與二氧化鉿陶瓷薄膜。為了使陶瓷薄膜與作為基材之奈米複合材料有良好之鍵結並產生層狀結構與奈米粒子相互支撐之結構以提高機械性質。最後將100 nm後的二氧化鉿以原子層沉積製備於經氧電漿處理之市售牙科填補複合材料上,其硬度提升超過100%且超越鈦金屬之硬度,而抗彎強度也有所提升。原子層沉積技術可應用於改善間接填補複合材料之機械性質。

並列摘要


Layered materials have been incorporated into nanocomposite. With the microstructure of layered material and nanoparticles supported each other, the nanocomposite has performed an unusual increase in mechanical properties For biphenyl (BP) liquid crystalline (LC) epoxy resin-based dental restorative materials, the partial melting of BP crystalline has observed during photopolymerization and the polymerization shrinkage has been efficiently reduced via the volume expansion resulted from this order-disorder transition. At high filler content, A nanoparticles embedded layers (NPEL) microstructure of the residual layered BP crystalline embedded by nanoparticles presents that contributes an increase in hardness and flexural modulus to the nanocomposite. A superhydrophobic and oleophobic transparent nanocomposite has been fabricated via a 3-step process. First a silica/polyacrylate nanocomposite containing nano-sized aggregates has been made from tricyclodecane dimethanol diacrylate (TCDDA) and silica nanoparticles of different particle sizes. Then, the surface of nanocomposites has been treated with oxygen plasma to roughen the surface and expose the silica nanoparticles. Finally, the fluorosilane, 1H,1H,2H,2H-perfluorodecyl trimethoxysilane (PFDTTMES) has been grafted on the surface of oxygen plasma exposed silica nanoparticles by dip-coating. We have fabricated a superhydrophobic and oleophobic transparent nanocomposite and confirmed that sol-gel process is able to be conducted on the oxygen plasma exposed nanoparticle on the surface of nanocomposite. Hafnium oxide and zirconium oxide films were deposited on the surface of nanocomposite using atomic layer deposition (ALD) process, respectively. The nanoparticles of nanocomposite were exposed by oxygen plasma treatment to create strong interaction between deposited metal oxide and nanocomposite, which should increase the mechanical properties of nanocomposite. The hafnium oxide was deposited commercial nanocomposite has performed the hardness higher than titanium and the improved flexural strength. Thus, ALD technologies has the potential to improve the mechanical properties of indirect dental restorative compsosite.

參考文獻


1. J. B. Summitt, J. W. Robbins and R. S. Schwartz, Fundamentals of Operative Dentistry, Quintesence Publishing Co, Inc, Illinois, 2001.
2. M. Giannini, C. J. Soares and R. M. de Carvalho, Dental Materials, 2004, 20, 322-329.
20. M. H. Chen, Journal of Dental Research, 2010, 89, 549-560.
23. C. E. Campodonico, D. Tantbirojn, P. S. Olin and A. Versluis, Journal of the American Dental Association, 2011, 142, 1176-1182.
24. M. E. Kim and S. H. Park, Operative Dentistry, 2011, 36, 326-334.

延伸閱讀