透過您的圖書館登入
IP:3.21.43.72

摘要


本文建構出H∞狀態回饋控制律,並利用系統之可偵測性 ( detectability)與可穩定性( stabilizability),推導出控制參數γ之最大下限求法;再者,考慮控制力施加時的時間延遲效應,推導出單自由度結構的極限延遲時間,並將文獻方法應用於H∞ 控制中成為指數穩定H∞控制法;最後,將H∞控制、LQR 控制及指數穩定H∞ 控制法以一單自由、一多自由度的結構系統作數值模擬並分析、比較之。

並列摘要


參考文獻


[2] A. J. Laub, “A Schur method for solving algebraic Riccati Equation,” IEEE Transactions of Automatic Control, Vol.24, No.6, pp.913-921 (1979).
[3] A. K. Agrawal, Y. Fujino and B. K. Bhartia,“Instability due to time delay and its compensation in active control of structures,” Earthquake Engineering and Structural Dynamics,Vol.22, pp.211-224 (1993).
[5] C. C. Lin, L. L. Chung and K. H. Lu, “Optimal discrete-time structural control using direct output feedback,” Engineering Structures, ASCE, Vol.18, No.6, pp.472-482 (1996).
[6] C. C. Lin, J. F. Sheu, S. Y. Chu and L. L. Chung, “Time delay effect and its solutions in direct output feedback control of structrues,” Earthquake Engineering and Structural Dynamics,Vol.25, pp.547-559 (1996).
[7] G. W. Housner, L. A. Bergman, T. K. Caughey, A. G. Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. T. Soong, B. F. Spencer and J. T. P. Yao, “Structural control: Past, present and future,” Journal of Engineering Mechanics, Vol.123, No.9, pp.897-971 (1997).

延伸閱讀