透過您的圖書館登入
IP:216.73.216.68
  • 學位論文

三維暫態直流電漿火炬模擬

Three-Dimensional Unsteady Simulation of Direct Current Plasma Torch

指導教授 : 趙修武
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究使用有限體積法離散基於連續方程式、動量方程式、能量方程式、電磁場方程式及SST k-ω紊流模型的磁流體動力方程組,建立非傳輸型井式直流電漿火炬的三維暫態數學模型,並開發流場分析程式碼。本研究的火炬長690 mm,火炬半徑11 mm,模擬分析工作壓力為1大氣壓條件下,流量範圍為100 SLM至200 SLM間以及工作電流為100 A至200 A 間的空氣電漿火炬特性,並假定陰極弧根以1000 Hz頻率環繞火炬內壁移動。本研究利用迴歸分析計算結果顯示電弧長度正比於工作電流的-1.008次方以及入流流量的0.295次方;出口平均軸向速度正比於工作電流的-0.754次方以及入流流量的1.691次方;出口平均旋向速度正比於工作電流的-2.061次方以及入流流量的3.491次方;出口平均溫度正比於工作電流的-0.415次方以及入流流量的0.427次方。

並列摘要


This study develops a numerical framework where a finite volume method is used to discretize the MHD equations consisting of the continuity, momentum, energy, Maxwell's equations and the SST k-ω turbulence model. A three-dimensional unsteady model is established to simulate a non-transferred direct-current plasma torch equipped with well-type cathode. The investigated torch has a length of 690 mm and a radius of 11 mm. The plasma torch flow is calculated at an inlet flow rate ranging from 100 SLM to 200 SLM and a working current ranging from 100 A to 200 A. The working pressure is 1 atm where the cathode spot is assumed to have a circulation frequency of 1000 Hz. With the help of a regression analysis, the arc length is predicted to grow with I^(-1.008) and Q^0.295; the mean axial velocity at the outlet is predicted to grow with I^(-0.754) and Q^1.691; the mean tangential velocity at the outlet is predicted to grow with I^(-2.061) and Q^3.491; the mean temperature at the outlet is predicted to grow with I^(-0.415) and Q^0.427.

參考文獻


[1] B. Selvan, K. Ramachandran, K. Sreekumar, T. Thiyagarajan, and P. Ananthapadmanabhan, "Numerical and experimental studies on DC plasma spray torch," Vacuum, vol. 84, no. 4, pp. 444-452, 2009.
[2] 徐少駒,在不同背壓條件下非傳輸型井式陰極直流空氣電漿火炬內部流場模擬,國立臺灣科技大學機械工程系碩士論文,2013。
[3] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, no. 16, p. 1946, 2002.
[4] K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Comparative study of two-and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes," Physics of Plasmas, vol. 15, no. 2, p. 023501, 2008.
[5] Z. Pan, L. Ye, S. Qian, Q. Sun, C. Wang, T. Ye, and W. Xia, "Comparison of Reynolds average Navier–Stokes turbulence models in numerical simulations of the DC arc plasma torch," Plasma Science and Technology, vol. 22, no. 2, 2020.

延伸閱讀