透過您的圖書館登入
IP:3.148.239.85
  • 學位論文

視紫紅質用於ITO表面修飾及與共軛高分子間的能量轉移研究

Utilization of Rhodopsin in ITO Surface Modification and Study on the Energy Transfer between Rhodopsin and Conjugated Polymers

指導教授 : 賴育英
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


從嗜鹽古細菌的細胞膜上發現的細菌視紫紅質HmBRI之突變種HmBRI-D94N是一種由光驅動的氫離子幫浦。HmBRI-D94N內部的全反式retinal在吸收光能之後改變構形,進而使HmBRI-D94N依序放出和吸收一個氫離子。這個光敏感蛋白質可以在光照下瞬間酸化周遭環境,造成一個短時間的pH值變化。這在生醫領域裡可以做為感光裝置元件,藥物傳遞材料和偵測元件等應用。本實驗分成兩部分,第一部分為利用具有螢光性質的共軛高分子去改變HmBRI-D94N氫離子幫浦功能所需使用的驅動波長。HmBRI-D94N是吸收波長為550 nm附近的綠光而受驅動,結合會放出綠色螢光的共軛高分子,理論上可以在其他波長的光照下驅動HmBRI-D94N,延伸HmBRI-D94N的應用範圍。本實驗使用兩種高分子,poly(p-phenyleneethynylene)的離子性高分子PPESO3,以及poly[2,7-(9,9-dihexylfluorene)-alt-4,7-benzothiadiazole)] (PFBT)的奈米粒子。這兩種共軛高分子都具有藍光的吸收波段以及綠光的螢光波段,並且都有著吸收紅外光的雙光子吸收的性質。以高穿透跟低傷害的紅外光激發高分子,藉由螢光共振能量轉移(FRET)間接激發HmBRI-D94N為此實驗的目標。第二部分為氧化銦錫(ITO)導電玻璃的表面改質,目的是讓HmBR-D94N I能夠依附在導電玻璃之上。首先使用三乙酸基胺(NTA)跟鎳離子,跟HmBRI-D94N上的組氨酸標籤(histidine tag)形成錯合物。這方法雖然能成功固定HmBRI-D94N在ITO上,但不夠穩定,容易在水中解離。因此在形成錯合物之後,再用1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺 (3-(ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine,簡稱EDC)跟N-羥基琥珀醯亞胺(N-Hydroxysuccinimide,簡稱NHS)使HmBRI-D94N跟NTA之間形成更穩定的醯胺鍵結。結合HmBRI-D94N的氫離子釋放能力跟ITO因為環境酸鹼值改變電動勢的性質,可以作成偵測蛋白質交互反應的元件。

並列摘要


A new kind of bacteriorhodopsin HmBRI was found in Haloarcula marismortui. HmBRI-D94N is a light driven proton pump, which is functioned by a series of conformational changes of the retinal inside the protein in the presence of light illumination. It can pump out a proton and change the pH value of environment in a very short time. HmBRI-D94N can be engineered for application for biotechnology, including molecular memory devices, light-triggered drug delivery, and a protein sensor. The first part of this study focuses on changing the wavelength of stimulating light to drive HmBRI-D94N, by introducing water-soluble conjugated polymer. The proton-pump functionality of HmBRI-D94N is triggered by absorbing primarily green light. Theoretically speaking, a polymer which can convert other wavelengths into green fluorescence should be capable of activating HmBRI-D94N by Förster resonance energy transfer (FRET). PPESO3 (conjugated polyelectrolyte) and poly(fluorine-alt-benzothiadiazole) (PFBT, water-soluble nanoparticles) are examined for this purpose. The results indicate that the FRET can take place between PFBT and HmBRI-D94N. The second part is the surface modification of indium tin oxide (ITO) glass by HmBRI-D94N, aiming at stably fastening HmBRI-D94N onto the ITO glass. A combination of nitrilotriacetic acid and nickel ion was employed to absorb HmBRI-D94N by establishing the coordination between polyhistidine-tag of HmBRI-D94N and nickel. This modification can be achieved; however, the coordination is not stable enough. HmBRI-D94N can be easily removed from the ITO surface by water and in the presence of imidazole‎. (3-(Ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine (EDC) and N-hydroxysuccinimide (NHS) were then utilized to build covalent bond between HmBRI-D94N and NTA. The corresponding device performs good stability against water and even imidazole, validating that HmBRI-D94N can be stably fastened on the ITO glass by our approaches.

並列關鍵字

polymer fluorescence FRET surface modification protein rhodopsin

參考文獻


1. Lanyi, J. K., Bacteriorhodopsin. Annual Review of Physiology 2004, 66, 665-688.
2. 傅熙媛 in 國立臺灣大學 微生物與生化學研究所. 2008.
3. Spudich, J. L., The Multitalented Microbial Sensory Rhodopsins. Trends In Microbiology 2006, 14 (11), 480-487.
4. Baliga, N. S.; Bonneau, R.; Facciotti, M. T.; Pan, M.; Glusman, G.; Deutsch, E. W.; Shannon, P.; Chiu, Y. L.; Gan, R. R.; Hung, P. L.; Date, S. V.; Marcotte, E.; Hood, L.; Ng, W. V., Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Research 2004, 14 (11), 2221-2234.
5. Sharma, A. K.; Spudich, J. L.; Doolittle, W. F., Microbial Rhodopsins: Functional Versatility and Genetic Mobility. Trends in Microbiology 2006, 14 (11), 463-469.

延伸閱讀