透過您的圖書館登入
IP:18.222.107.172
  • 學位論文

分數型橢圓算子的唯一延拓性以及應用

Unique Continuation Property of the Fractional Elliptic Operators and Applications

指導教授 : 王振男

摘要


在這篇論文,我們考慮下列分數型薛定諤方程: 在 ℝ^n 上,((-Δ)^s + b(x)x⋅∇ + q(x))u = 0 , 在 ℝ^n 上,((-∇⋅A∇)^s + q(x))u = 0 。 我們研究上述方程的蘭迪斯猜想,也就是說,當方程解以某種指數速率遞減,那麼該解必須為零。蘭迪斯猜想也可以理解為從無窮遠處的唯一延拓性。對於 s=1 的情況,關於蘭迪斯猜想的研究上已經有很多成果。卡樂門估計是目前最常使用的工具。當 0

並列摘要


In this dissertation, we consider the following Schrödinger equations of fractional-type: ((-Δ)^s + b(x)x⋅∇ + q(x))u = 0 in ℝ^n, ((-∇⋅A∇)^s + q(x))u = 0 in ℝ^n. We want to study a Landis-type conjecture for the equations above, that is, any nontrivial solution must not decay faster than a certain exponential rate. Landis-type conjecture also can be regarded as the unique continuation property (UCP) from the infinity. The Landis-type conjecture is well-studied for the case when s=1. The main ingredient is the Carleman-type inequality. However, when 0

參考文獻


[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, Vol 71 (2000), Cambridge University Press.
[2] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory. Graduate Texts in Mathematics, 137. Springer-Verlag, New York, 1992. xii+231 pp. ISBN: 0-387-97875-5
[3] D. H. Armitage, Uniqueness theorems for harmonic functions in half-spaces. J. Math. Anal. Appl. 106 (1985), no. 1, 219--236.
[4] H. P. Boas and R. P. Boas, Short proofs of three theorems on harmonic functions. Proc. Amer. Math. Soc. 102 (1988), no. 4, 906--908
[5] J. Bourgain and C. Kenig, On localization in the continuous Anderson-Bernuolli model in higher dimension. Invent. Math. 161 (2005), no. 2, 389--426

延伸閱讀