透過您的圖書館登入
IP:3.138.37.184
  • 學位論文

支援跨物種組織的整合性高通量序列分析及功能註解參考系統

Integrated reference system for high-throughput sequence analytic and functional annotation on cross-species and multiple-tissue

指導教授 : 黃乾綱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


生物學家會利用較常研究的模式動物(model animal) ,透過蛋白質或基因序列的來預測與非模式動物的同源關係。然而,從過去研究的文獻了解,跨物種組織的整合平台與高通量的序列比對系統顯得相當重要。若是缺乏一個整合平台,則研究人員需要先至網站下載欲研究的物種資料,並建構各資料間的關聯性。若尚需考慮跨物種組織的序列比對,操作流程會更加複雜。此外,針對基因功能註解的部分還可以透過GO Term說明。 本論文目的為建構一個跨物種組織分析的系統平台,提供研究人員選擇欲研究的物種與組織進行高通量序列比對,進而協助研究人員對跨物種組織之間的同源性有所了解,而這也是目前大部分的生物資訊系統所缺乏的功能。此外,我們也將序列比對結果與GO功能註解資訊建立連結。最後,我們運用Web2.0的技術提供友好的人機互動介面,並將查詢結果封裝為XML (Extensible Markup Language)格式,以利於未來的信息交流。

並列摘要


The biologists expect to use model animal to predict non-model animal when they want to deal with sequence alignment. However, the integrated platform on cross-species and multiple-tissue for gene-protein-function inference is critical according to literature surveys on related service. Without integrated platform, researches have to download files, link the relationships between databases, and develop programs to deal with dataset manually. With the consideration of different species and multiple tissues, the complexity of platform is incredible to deal with multiple data sources for biologists. In addition, function inference for gene sequences could be done by GO (Gene Ontology) term. In this paper, we propose a framework of integrated platform with cross-species and multiple-tissue data reference, and it provides high-throughput sequence analytic tool for homology mapping. In addition, we also develop a web service to integrate different data sources and functional annotation information of GO. Computer science technology is also applied such as XML (Extensible Markup Language) for information exchange to simplify flow combination and dynamic web design and web 2.0 technology for friendly interactive interface to provide enriched information.

並列關鍵字

DNA cross-species multiple-tissue BLAST model animal

參考文獻


1. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
2. Boguski, M.S. and G.D. Schuler, ESTablishing a human transcript map. Nat Genet, 1995. 10(4): p. 369-71.
3. Fickett, J.W., Fast optimal alignment. Nucleic Acids Res, 1984. 12(1 Pt 1): p. 175-9.
4. Altschul, S.F. and D.J. Lipman, Protein database searches for multiple alignments. Proc Natl Acad Sci U S A, 1990. 87(14): p. 5509-13.
5. Sprague, J., et al., The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res, 2008. 36(Database issue): p. D768-72.

延伸閱讀