透過您的圖書館登入
IP:18.223.209.231
  • 學位論文

調控表面金屬奈米顆粒的基板侷域表面電漿子共振模態行為以最大化與氮化銦鎵/氮化鎵量子井的表面電漿子耦合效果

Control of the Behavior of the Substrate Localized Surface Plasmon Resonance Mode of a Surface Metal Nanoparticle for Maximizing the Surface Plasmon Coupling Effect with an InGaN/GaN Quantum Well

指導教授 : 楊志忠

摘要


在本研究中,我們首先模擬表面金屬奈米顆粒與量子井之間的表面電漿子耦合行為,顯示金屬奈米顆粒的基板侷域表面電漿子共振模態對耦合效果的重要性。金屬奈米顆粒與基板之間的接觸界面越大,所產生的基板侷域表面電漿子共振模態越強,得以實現更強的表面電漿子耦合效果。接著,我們利用自組裝的方式在氮化銦鎵/氮化鎵藍光量子井結構表面鋪陳銀奈米顆粒,為了增加銀奈米顆粒與基板之間的接觸界面,其中一組樣品在不同溫度下進行熱退火,另外一組樣品對銀奈米顆粒施加壓力。藉由提高熱退火的溫度或施加壓力大小,我們可以增加表面銀奈米顆粒侷域表面電漿子共振波長的紅移範圍。在適當的熱退火或施加壓力條件下,侷域表面電漿子共振可以與量子井的發光波長匹配,可最大程度地提高量子井內部量子效率,並縮短其光致發螢光衰減時間。

並列摘要


In this study, we first numerically demonstrate the importance of the substrate localized surface plasmon (LSP) resonance mode of a surface metal nanoparticle (NP) in the surface plasmon (SP) coupling process between the metal NP and a quantum well (QW) below. A larger contact interface between the metal NP and template results in a stronger substrate LSP mode and hence a stronger SP coupling process. Then, through the self-assembly approach, we prepare seven surface Ag NP samples on InGaN/GaN blue-emitting QW structures. Three of them are thermally annealed at different temperatures and the other three are processed with pressure application for increasing their contact interfaces. By increasing either thermal annealing temperature or applied pressure, the red-shift range of transmission depression or LSP resonance wavelength of the surface Ag NPs is increased. Under a proper condition of thermal annealing or pressure application, the LSP resonance can match the QW emission wavelength, leading to the maximum internal quantum efficiency enhancement and photoluminescence decay time reduction.

參考文獻


1. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131-1144 (2000).
2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601-605 (2004).
3. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253-1257 (2008).
4. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
5. N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2, 816 (2012).

延伸閱讀