透過您的圖書館登入
IP:3.129.218.83
  • 學位論文

腺甘酸A2A受體結構預測以及靜止態和活化態的結構比較

Structural prediction of the adenosine A2A receptor and comparison of its resting state and active state conformations

指導教授 : 林榮信

摘要


在最近,活化的腺甘酸A2A受體(adenosine A2A receptor)被確認為是治療亨丁頓舞蹈症(Huntington's Disease)的目標受體之ㄧ。在分類上,腺甘酸A2A受體屬於G蛋白質結合受體(GPCR)中視紫質(rhodopsin)相似家族的一個受體。 腺甘酸A2A受體在結構上由7個α-螺旋組成,每一個螺旋的長度大約為25個胺基酸的長度。直到現今,腺甘酸A2A受體的立體結構都還沒有被用實驗的方法解出來。因為在結構生物學的領域中,用實驗的方法解出膜蛋白(membrane protein)的結構仍然是一件挑戰的工作。除了實驗以外解蛋白質結構的方法是利用同源性模擬法。在本研究中,我們使用牛的視紫質結晶結構(PDB code: 1U19, 2.2Å)當作同源性模擬法的結構模板來建構腺甘酸A2A受體(1-301)。除了C-tail(302-410),腺甘酸A2A受體的結構是使用軟體MODELLER9V1來建構的。在同源性模擬法的序列排序的步驟中,我們把視紫質的序列和腺甘酸受體家族(A1, A2A, A2B, A3)一起排序,為的是把演化的關係考慮在排序中以增進排序的準確度。腺甘酸A2A受體的C-tail(302-410)是使用TASSER-Lite網站,使用摺疊辨識法(Fold recognition)來建構的。當得到腺甘酸A2A受體的全長的結構後,我們把受體結構放進脂質-水的系統中進行2ns的分子動力學模擬使用AMBER9。同時,我們也使用Catalyst建立腺甘酸A2A受體的增效劑(agonist), 對抗劑(antagonist)的藥效基團(pharmacophore)的模型。然後,和藥效基團疊合的最有藥效的增效劑和對抗劑的構形被分別選出並使用Autodock3把這2種構形的化合物和腺甘酸A2A受體嵌合。最後,我們進行10ns的分子動力學模擬在腺甘酸A2A受體-對抗劑,腺甘酸A2A受體-增效劑,腺甘酸A2A受體-NMR-構形限制對抗劑,腺甘酸A2A受體-NMR-構形限制對抗劑。詳細的腺甘酸A2A受體-配位體的交互作用力分析將可以幫助設計更有藥效的腺甘酸A2A受體的抑制劑或是活化劑。

並列摘要


The activation of human adenosine A2A receptor has recently been identified as a candidate target for designing therapeutics for the Huntington disease. Adenosine A2A receptor belongs to the GPCR, rhodopsin-like superfamily. It consists of 7 transmembrane α-helices, and each is about 25 residues in length. Nowadays, the three-dimensional structure of adenosine A2A receptor obtained from experimental methods is still unavailable. The determination of membrane protein structures via experimental approaches remains a major challenge in the field of structural genomics. An alternative approach to building a molecular model of a protein is from homology modelling procedure. We used bovine rhodopsin crystal structure (PDB code: 1U19, 2.2Å) as homology modelling template to construct the adenosine A2A receptor (1-301) except its c-tail using MODELLER9v1. In the alignment step, we aligned all the rat adenosine receptor family sequences (A1, A2A, A2B, and A3) with rhodopsin sequence to take evolutionary relationship into account and improve the alignment accuracy by using CLUSTALW. The exceptional long c-tail structure of adenosine A2A receptor (302-410) was modeled from best model of TASSER-Lite web server using the fold-recognition approach. After the full-length adenosine A2A receptor structure has been constructed, we put the receptor into lipid-water environment to run 2-ns molecular dynamics simulation refinement using AMBER9. We also made the pharmacophore model of adenosine A2A receptor agonist and antagonist, respectively, using Catalyst®. Then, the most potent agonist and antagonist conformations which fitted its pharmacophore model best were selected. The chosen agonist and antagonist conformations were docked with adenosine A2A receptor using Autodock3. Finally, we made 10-ns molecular dynamics simulations of receptor with an antagonist, receptor with a NMR-restraint antagonist, receptor with an agonist, and receptor with an NMR-restraint agonist, to analyze the receptor-ligand binding interactions. The detailed knowledge of the binding locations will help to design more potent inhibitors for this receptor.

參考文獻


1. Fredholm, B.B., Ijzerman, A.P., Jacobson, K.A., Klotz, K.N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 53, 527-552 (2001).
3. Robinson, P.R., Cohen, G.B., Zhukovsky, E.A. & Oprian, D.D. Constitutively Active Mutants of Rhodopsin. Neuron 9, 719-725 (1992).
5. Lu, Z.L., Curtis, C.A., Jones, P.G., Pavia, J. & Hulme, E.C. The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: Mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Molecular Pharmacology 51, 234-241 (1997).
6. Rasmussen, S.G.F., et al. Mutation of a highly conserved aspartic acid in the beta(2) adrenergic receptor: Constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Molecular Pharmacology 56, 175-184 (1999).
8. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrine Reviews 21, 90-113 (2000).

延伸閱讀