透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

加入剛性推電子基於亞酞菁結構的光電化學性質於太陽能材料可能性的探討

Exploring the Potential of Incorporating Rigid Electron-Donating Groups into Subphthalocyanine Structures for Solar Energy Materials Based on Their Photoelectrochemical Properties

指導教授 : 陳志欣

摘要


亞酞菁因其高吸收係數、高綠光靈敏度、光熱與電化學穩定性,以及結構易修飾性,而廣泛應用於光電感測器與太陽能材料。然而,雖然已有許多酞菁或亞酞菁衍生物被合成並應用於太陽能傳輸材料的研究,針對剛性推電子基影響的系統性研究是沒有的。因此,本研究合成了兩種含有剛性推電子基的亞酞菁衍生物,分別為氧取代(6O-SubPc)與硫取代(6S-SubPc)版本。與未修飾的 SubPc 相比,這兩種衍生物的吸收譜紅移至橘紅光區(600–620 nm)。此外,其放光特性顯示出反斯托克位移行為。理論計算結果顯示,含硫的剛性推電子基導致分子結構更加彎曲,呈現碗狀幾何構型。本研究進一步探討這些衍生物在溶液與薄膜中的 HOMO 與 LUMO 能階,以及表面粗糙度對薄膜性質的影響。結果表明,剛性推電子基的引入有效調整了分子結構與光電性質,為亞酞菁衍生物在光電應用中的進一步開發提供了新的設計思路。

並列摘要


Subphthalocyanines (SubPcs) are widely utilized in optoelectronic sensors and solar energy materials due to their high absorption coefficients, strong green light sensitivity, photothermal and electrochemical stability, and structural tunability. However, despite numerous studies on phthalocyanine and SubPc derivatives for solar energy transport materials, systematic research on the effects of rigid electron-donating groups remains unexplored. In this study, two SubPc derivatives incorporating rigid electron-donating groups were synthesized: an oxygen-substituted version (6O-SubPc) and a sulfur-substituted version (6S-SubPc). Compared to unmodified SubPc, these derivatives exhibited red-shifted absorption spectra into the orange-red region (600–620 nm). Additionally, their photoluminescence characteristics displayed an anti-Stokes shift behavior. Theoretical calculations revealed that the sulfur-containing rigid electron-donating group induced a more pronounced molecular curvature, resulting in a bowl-shaped geometry. This study further investigated the HOMO and LUMO energy levels of these derivatives in solution and thin films, as well as the impact of surface roughness on thin film properties. The results demonstrate that the incorporation of rigid electron-donating groups effectively modifies the molecular structure and optoelectronic properties, providing new design strategies for the development of SubPc derivatives in optoelectronic applications.

參考文獻


1. Chandrabhan Verma; Eno E Ebenso; M.A. Quraishi; Kyong Yop Rhee. Phthalocyanine, naphthalocyanine and their derivatives as corrosion inhibitors: A review. J. Mol. Liq. 2021, 334, 116441. DOI: 10.1016/j.molliq.2021.116441
2. A.B. Djurišić; C.Y. Kwong; T.W. Lau; W.L. Guo; E.H. Li; Z.T. Liu; H.S. Kwok; L.S.M. Lam; W.K. Chan. Optical properties of copper phthalocyanine. Opt. Commun. 2002, 205, 155−162. DOI: 10.1016/S0030-4018(02)01311-1
3. Hans Gommans; David Cheyns; Tom Aernouts; Claudio Girotto; Jef Poortmans; Paul Heremans. Electro-Optical Study of Subphthalocyanine in a Bilayer Organic Solar Cell. Adv. Funct. Mater. 2007, 17, 2653–2658. DOI: 10.1002/adfm.200700398
4. Del Rey; Keller; Torres; Rojo; Agulló-López; Nonell; Martí; Brasselet, Ledoux; Zyss. Synthesis and Nonlinear Optical, Photophysical, and Electrochemical Properties of Subphthalocyanines. J. Am. Chem. Soc. 1998, 120, 12808–12817
5. R. P. LINSTEA. Phthalocyanines. Phthalocyanines. Part I. A new type of synthetic colouring matters. J. Chem. Soc. 1934, 1016–1017

延伸閱讀