透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

基於消費者評論的旅遊人數預測模型:以淡水為例

tourism Forecasting Model Using online reviews: a case study of Tamsui

指導教授 : 陳怡妃

摘要


全球旅遊經濟發展越趨興盛,如何妥善運用使用者生成內容推行當地觀光產業,並且在正確的時間留住觀光客並把握商機是業者很重要的議題。本研究基於Tripadvisor旅遊網站、Google Trends以及交通部觀光局中蒐集評論與數據,將消費者評論進行分析,集結TF-IDF資料處理、LDA主題模型萃取以及LightGBM技術,以建立準確的旅遊人數預測模型。研究結果顯示Google Trends與旅遊評論萃取結果兩種變數有助於提高旅遊模型之準確率,能夠在短時間內使用有限的數據達到旅遊人數預測之目的。

並列摘要


With the flourishing development of the global tourism economy, effectively utilizing user-generated content to promote the local tourism industry and capturing business opportunities at the right time have become crucial issues for industry practitioners. This study leverages data from the Tripadvisor travel website, Google Trends, and the Tourism Bureau of the Ministry of Transportation and Communications to analyze consumer reviews. By employing TF-IDF data processing, LDA topic modeling, and LightGBM technology, an accurate tourist visitor forecasting model is established. The research findings demonstrate that both Google Trends and extracted travel review variables contribute to improving the accuracy of the tourism model. Moreover, the model can achieve the purpose of predicting tourist visitor numbers using limited data in a short period of time.

參考文獻


中文文獻
楊德倫(2014)。國立台灣大學計算機及資訊網路中心電子報。http//www.cc.ntu.edu.tw/chinese/epaper/0031/20141220_3103.html
謝邦昌、鄭宇婷、謝邦彥、硬是愛數據應用股份有限公司 (2017) 。玩轉社群文字大數據實作。台北市:五南書局。
英文文獻
Afzaal, M., Usman, M., Fong, A. (2019). Predictive aspect-based sentiment classification of online tourist reviews. Journal of Information Science, 45(3), 341–363.

延伸閱讀