透過您的圖書館登入
IP:3.145.38.251
  • 學位論文

在有限區間向量型Sturm-Liouville方程式的唯一性定理

Uniqueness of the potential function of the vectorial Sturm- Liouville equations with general boundary conditions

指導教授 : 謝忠村

摘要


關於定義在區間的非對稱形Sturm-Liouville 微分方程式的反問題研究及學習,Yurko ( [24] , 2006)利用Weyl矩陣,提出了矩陣邊界值問題的反問題有唯一性的定理。 在本篇論文,首先;對於Sturm-Liouville矩陣微分方程式含有一般的邊界條件的反問題,我們將証明ㄧ般的h1 , H1,亦可得到Q(x)有唯一性。利用矩陣型式邊界值反問題的唯一性,我們主要工作是在向量微分方程式邊界值反問題上,探求向量頻譜(spectral sets)與位階函數Q(x)唯一性的關係。 對於h1 = H1 = In ,我們找出某些個頻譜就可以決定Q(x)了。而若為一對稱矩陣或對角化矩陣,則個別僅需某些頻譜集合即可。 對於一般的h1 , H1,我們也獲得了一些相關的結果。

關鍵字

頻譜

並列摘要


Inverse spectral problems are studied for the non-self-adjoint matrix Sturm-Liouville differential equation on a finite interval. Using Weyl function, Yurko([24],2006) solved the inverse spectral problem for the matrix Sturm-Liouville operator on a finite interval with the boundary value problem L(Q(x), h, H ). At first, in this thesis, we try to solve the uniqueness theorem of the matrix-valued boundary value problem for arbitrary matrices h1 , h0 , H1 , H0 with the general boundary conditions. By the uniqueness theorem of L(Q(x),h1 , h0 , H1 , H0) described as above, our main work is to find those relations between spectra and potential Q(x) for the vectorial Sturm-Liouville differential equation. For h1 = H1 = In , we will give some characteristic functions corresponding to spectra to determine the Weyl matrix and to prove the uniqueness theorem. Furthermore, we also prove the uniqueness theorems for the vectorial Sturm-Liouville operators with real symmetric potential or real diagonal potential by given some spectra, respectively. We also obtain some results for arbitrary matrices h1 and H1.

參考文獻


[1] Andersson E., On the m-function and Borg-Marchenko theorems for vector-valued Sturm- Liouville equations. Journal of Mathematical Physics Vol. 44(2003), Issue 12, pp. 6077-6100.
[2] Brog G., Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78(1946), 1-96.
[3] Carlson R., An inverse problem for the matrix Schr dinger equation. Journal of Mathematical Analysis and Applications, 267(2002) , pp. 564-575.
[4] Chern H-H and Shen C-L., On the n-dimensional Ambarzumyan’s theorem. Inverse Problems, 13(1997) No 1, 15-18.
[5] Clark S.; Gesztesy F.; Holden H.and Levitan B. M., Borg-Type Theorems for Matrix-Valued Schr dinger Operators. Journal of Differential Equations Vol.(2000),167 (2000), No. 1, pp. 181-210.

延伸閱讀