透過您的圖書館登入
IP:3.135.63.86
  • 學位論文

禁止模式的默慈金路徑與其統計量之聯合分布

Pattern-avoiding Motzkin paths and their joint distributions of statistics

指導教授 : 徐祥峻

摘要


從Asinowski, Banderier, Roitner等人撰寫的論文中,他們研究了具有禁止模式Motzkin path。不同禁止模式的Motzkin path具有類似的計數數列,他們研究的方向是分別計算出不同禁止模式Motzkin path的生成函數。而淡江大學研究生陳麒文,也經徐祥峻教授指導,對其禁止模式有了新的進展,透過研究生陳麒文的論文,發現那些相同的數列卻禁止不同模式的Motzkin path 存在著一一對應的關係,像是禁止UU模式n步的Motzkin path 對應禁止UD模式n+1步的Motzkin path ,以統計量等的方式可以知道DHU會與UHU等分布,也能使用遞迴的方式尋找如何產生一一對應。 本篇主要探討禁止DU模式n步下的Mitzkin paths 與禁止UD模式n+1步下的Mitzkin path、禁止DD,DU模式n步的Motzkin path對應禁止DD,UD模式n+1步的Motzkin path,以及禁止HD,DU模式n步的Motzkin paths 對應禁止DH,UD模式n+1步的Motzkin path 均存在一一對應,以及使用多組統計量的方式來尋找等分布,最後運用鏡射的方式來解決更多的一一對應。

並列摘要


From the paper by Asinowski, Banderier, Roitner et al., they study the Motzkin path with pattern-avoiding. Motzkin paths with different pattern-avoiding have similar counting sequences. The direction of their research is to calculate the generating functions of different pattern-avoiding Motzkin paths, and Tamkang University graduate student Chi-Wen, Chen, under the guidance of Professor Hsiang-Chun, Hsu, has made new progress in the pattern-avoiding. Through the thesis of graduate student Chi-Wen, Chen, it is found that there is a one-to-one correspondence between the Pattern-avoiding Motzkin paths of the same sequences, such as n-steps UU-avoiding Motzkin paths and (n+1)-steps UD-avoiding Motzkin paths, we can know statistic DHU and UHU are equal distributions, and also use recursive methods to find how to generate one-to-one correspondence. This paper mainly discusses n-steps DU-avoiding Motzkin paths and (n+1)-steps UD-avoiding Motzkin paths, and n-steps DD,DU-avoiding Motzkin paths and (n+1)-steps DD,UD-avoiding Motzkin paths, and n-steps DH,DU-avoiding Motzkin paths and (n+1)-steps HD,UD-avoiding Motzkin paths. And used their joint distributions of statistics to find equal distributions, finally use mirroring to solve more statistic is equal joint distributions and how to one-to-one.

參考文獻


1. A. Asinowski, C. Banderier, and V. Roitner, Generating functions for lattice paths with several forbidden patterns, Proceedings of the 32nd Conference on Formal Power Series and Algebraic Combinatorics (Online).
2. J. Bertrand, Solution d'un problème, Comptes Rendus Acad. Sci. Paris Sér. I, 105 (1887),369.
3. M. Bóna, Handbook of Enumerative Combinatorics, Discrete Mathematics and Its Applications. CRC Press, Hoboken, NJ, 2015.
4. R. Donaghey and L.W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A, 23 (3) (1977) , 291-301.
5. S.P. Eu and T.S. Fu, A simple proof of the Aztec diamond theorem, Electron. J. Combin.,12 (2005),# R18.

延伸閱讀