在統計品質管制中,若有興趣的問題是查驗產品以決定是否接受或者拒絕此產品,我們將這類的查驗程序稱之為允收抽樣。如果產品的品質特性是產品壽命,則允收抽樣的問題就轉變成壽命試驗的問題。壽命試驗的目地在於當壽命試驗顯示產品壽命超過期望標準時,我們選擇接受此批產品;相對地,當壽命試驗顯示產品壽命未到達標準時,我們將會拒絕此批產品。假如產品的壽命很長,則等待直到全部產品壽命結束以完成壽命試驗可能將會相當費時。因此,在本篇論文中,我們規劃出當產品壽命服從Inverse Gaussian分配與Birnbaum-Saunders分配時的截略壽命試驗,以降低完成試驗所需的時間,並說明如何推算出此允收抽樣計劃的相關參數值。在每個抽樣計劃之後,本論文也提供部份實用的表列值以供當產品壽命服從Inverse Gaussian分配與Birnbaum-Saunders分配時,使用者可以直接使用本文建議的允收抽樣計劃。
In statistical quality control, the type of inspection procedure is usually called acceptance sampling when the inspection of products is for the purpose of acceptance or rejection a product. If the quality characteristic is the lifetime of product, the problem of accepance sampling becomes the life test. One objective of the test is to accept the lot when the test shows that the mean life of products exceeds the standard; otherwise, we reject the lot if the test shows that the mean life of products below the standard. Frequently, it might time consuming to wait until all the products fail in a life test if the lifetimes of products are high. In this thesis, a truncated life test is proposed to the Inverse Gaussian and Birnbaum-Saunders life data, which can save the testing time. An algorithm is provided to obtain the sampling plans based on the truncated life test. Moreover, some useful tables are provided for the sampling plans under those two lifetime distributions.