透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

使用伯氏多項式估計存活風險率

Estimation for Survival Hazard Rate using Bernstein Polynomials

指導教授 : 溫啓仲

摘要


本研究將根據右設限資料提出一個具平滑性質之存活風險率,而風險率模型所引進之參數將以最大概似估計法來估計。此估計程序可以提供一個存活風險率的平滑估計。我們根據牛頓法的原理,提出一個有效求取最大概似估計量的演算法。此估計方法的成功,於模擬試驗及對白血病患緩解時間的數據資料之分析結果將被說明。另外,我們的方法與尼爾生-艾倫方法的比較,和伯氏多項式階數之選取亦為本文討論的議題。

並列摘要


In this thesis, we study the maximum likelihood estimator for a survival hazard rate with right censored data, in which the hazard rate is specified by the Bernstein polynomial. Our estimation procedure can provide a smooth estimator of the survival hazard rate. We develop an efficient Newton-Raphson based algorithm for the computation of the maximum likelihood estimate. The success of this method is demonstrated in simulation studies and in the analysis of Leukemia remission-time data. In addition, the comparison with Nelson-Aalen method is presented and the selection of the degree for Bernstein polynomial is discussed.

參考文獻


[1] Chang, I.S., Hsiung, C.A., Wu, Y.J. and Yang, C.C.(2005). Bayesian survival analysis using Bernstein polynomials. Scand. J. Statist. 32 447-466.
[2] Chang, I.S., Chien, L.C., Hsiung, C.A., Wen, C.C. and Wu, Y.J. (2007). Shape restricted regression with random Bernstein polynomials. In R. Liu, W. Strawderman and C.H. Zhang (eds), Complex Dataset and Inverse Problems. IMS Lecture Notes – Monograph Series. 54 187-202.
[3] Klein, J.P. and Moeschberger, M.L. (2003). Survival Analysis Techniques for Censored and Truncated Data.
[4] Lamperti, J.W. (1996). Probability: a Survey of the Mathematical Theory.

延伸閱讀