透過您的圖書館登入
IP:18.119.120.229
  • 學位論文

r-凸函數的平均值

Mean values of r-convex functions

指導教授 : 陳功宇

摘要


若f為區間I上的連續正函數,且a,b∈I ,本文研究兩個函數 H(a,b;t)=frac{1}{b-a}int_{a}^{b}f(tx+(1-t)frac{a+b}{2})dx 與 F(a,b;t)=frac{1}{(b-a)^2}int_{a}^{b}int_{a}^{b}f(tx+(1-t)y)dxdy 我們的結果為 (1)若r≦1且f為r-凸函數,則對於所有a,b∈I,H(a,b;t)為t的 r-凸函數。 (2)若r≦1且f為r-凸函數,則對於所有a,b∈I,F(a,b;t) 為t的 r-凸函數。 (3)若對於所有a,b∈I,H(a,b;t)在[0,1]上為t的r-凸函數,則f在 I為凸函數。 (4)若對於所有a,b∈I,F(a,b;t)在[0,1]上為t的r-凸函數,則f在 I為凸函數。

並列摘要


For a continuous positive function f on interval I and a,b∈I, we consider two functions H(a,b;t)=frac{1}{b-a}int_{a}^{b}f(tx+(1-t)frac{a+b}{2})dx and F(a,b;t)=frac{1}{(b-a)^2}int_{a}^{b}int_{a}^{b}f(tx+(1-t)y)dxdy The followings are our results (1)If r≦1 and f is r-convex function then H(a,b;t) is r-convex function in t for all a,b in I. (2)If r≦1 and f is r-convex function then F(a,b;t) is r-convex function in t for all a,b in I. (3)If H(a,b;t) is r-convex function in t on [0,1] for all a,b in I, then f is r-convex function on I. (4)If F(a,b;t) is r-convex function in t on [0,1] for all a,b in I, then f is r-convex function on I.

參考文獻


[1]S. S. Dragomir, Two Mappings in Connection to Hadamard's Inequalities, J. Math. Anal. Appl., 167 (1992),49-56.
[2]C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math Lett. 13 (2000) 51-55
[3]C. E. M. Pearce, J. Pečarić and V. Šimić, Stolarsky means and Hadamard’s inequality, J.Math. Anal. Appl. 220 (1998), 99–109.
[5]WaadAllah T. Sulaiman, Integral inequality regarding r-convex and r-concave functions, J. Korean Math. Soc. 47 (2010), No. 2, 373–383
[6]K.-L. Tseng, S.-R. Hwang, G.-S. Yang and J.-C. Lo, Two inequalities for differentiable mappings and applications to weighted trapezoidal formula, weighted midpoint formula and random variable, Mathematical and Computer Modelling, 53 (2011) 179.188.

延伸閱讀


國際替代計量