在高維度資料研究中,控制偽發現率(FDR)已快速地被使用 於解決多重性問題。當同時執行大量的假設檢定時,FDR 已經成為 控制型I 誤差率膨脹的重要議題。在多重比較檢定中,傳統上常使 用整體錯誤率(FWER)來控制整體的型I 誤差率。然而,當很多 虛無假設是錯誤的情況下,FWER 會變的太保守以至於降低檢定 力。為了改善FWER 的缺點,Benjamini and Hochberg(1995)提出 較簡易且可提高檢定力的FDR 方法。FDR 有逐步向上與逐步向下 之檢定程序,在本篇論文中,主要的目的在於比較逐步向上與逐步 向下程序的表現,並且指出各個檢定程序的優缺點。模擬的結果指 出,當檢定個數很少和大部分假設都是錯誤時,Benjamini and Liu (1999a、1999b)所提出之方法比其他程序更具有檢定力;而在檢 定個數很多時,Benjamini and Hochberg(1995)程序有較高之檢定 力。
Controlling false discovery rate (FDR) has been increasingly utilized in high dimensional screening studies where the multiplicity is a problem. It becomes an important issue to control the inflating type I error rate when tons of tested hypotheses are simultaneously conducted. Traditionally, familywise error rate (FWER) is used to control the overall type I error in the area of multiple comparison. However, when many null hypotheses are false, FWER tends to be more conservative and has less power. To improve the drawbacks of FWER, a simple approach based on FDR can be used. Two types of FDR procedures for multiple comparison are step-up and step-down procedures. The objective of this article is to compare the performance of current step-up and step-down procedures, and detect the pros and cons of these procedures. The simulated results indicate that Benjamini-Liu (1999a,1999b) procedures are more powerful if the number of tested hypotheses is small and many of the hypotheses are far from true, whereas Benjamini- Hochberg (1995) procedure has large power if the number of tested hypotheses is large.