透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

基於T-GCN深度學習之台灣市區交通流量預測與視覺化

Traffic Flow Prediction and Visualization in Urban Areas of Taiwan Based on T-GCN Deep Learning Method

指導教授 : 高君豪

摘要


預測道路交通速度一直都是智能交通系統(ITS)熱門的研究話題。不僅可以為駕駛者提前提供交通資訊,節省行車時間;也可以為政府對交通的管理提出建議,例如交通信號燈的控制,擴建道路等。 現有的交通預測方法大部分只考慮空間依賴性或時間依賴性,本研究基於T-GCN的深度學習方法對臺北市信義區進行道路交通速度的預測,利用圖卷積網絡(GCN)和門控循環單元(GRU) 來獲取道路的空間特徵和數據的時間特徵,並且將預測結果以不同的路線顔色呈現在OpenStreetMap的地圖上。

並列摘要


Road traffic speed forecasting has become a popular research topic in intelligent transportation systems (ITS). It not only provides drivers with advance traffic information, saving them time, but also advises the government on traffic management, such as traffic light control or road construction. Most existing traffic prediction methods only consider either spatial dependence or temporal dependence. This research is based on the deep learning method of T-GCN to predict road traffic speed in Xinyi District, Taipei City. It utilizes the graph convolutional network (GCN) and the gated recurrent unit (GRU) to capture both the spatial features of the road and the temporal features of the data. Finally, the prediction results are presented on the OpenStreetMap map with different route colors.

參考文獻


參考文獻
1. Ahmed, M. S., Cook, A. R. (1979). Analysis Of Freeway Traffic Time-Series Data By Using Box-Jenkins Techniques (No. 722).
https://trid.trb.org/view/148123
2. Lee, S., Fambro, D. B. (1999). Application Of Subset Autoregressive Integrated Moving Average Model For Short-Term Freeway Traffic Volume Forecasting. Transportation research record, 1678(1), 179-188.
https://journals.sagepub.com/doi/full/10.3141/1678-22?casa_token=D9xMc2O3kk4AAAAA:gPOzs-sldPiYybr2T0GQWNztUWOEVysMTYnHMA9GOA4mKFTU2nS0WviBPtDmyqE6uvm9vZs5x2cw8g

延伸閱讀