格蘭傑因果關係是一個透過結合向量自迴歸模型中所有變數的資訊 於衡量兩組時間序列間可預測性的經典統計分析工具,傳統分析格蘭 傑因果關係的推論方法為 Wald 類型的檢定方法,然而這些檢定方法可 能會面臨以下問題: 一、需要挑選微調參數,二、當預估測之共變異 數矩陣為奇異矩陣時,用於推論的臨界值會失效。在這篇論文中,我 們發展了一個基於非樞紐統計量的格蘭傑因果關係檢定,此方法不僅 避免了以上兩個問題,相較於 Wald 類型的檢定,我們的方法有更佳的 檢定力,最後我們也通過幾個模擬例子和實際資料分析驗證此方法的 有效性。
Granger causality is a classical tool for measuring predictability from one group of time series to another by incorporating information of variables described by a vector autoregressive (VAR) model. Traditional methods for validating Granger causality are based on the Wald type tests, which may encounter a problem with (i) tuning parameter selection or (ii) test-statistic inflation when the true covariance matrix is singular or near-singular. In this study, we propose an alternative procedure for testing Granger causality based on non-pivotal statistics. The proposed hypothesis testing method is valuable in that (i) it does not require any calibration of tuning parameters (thus saving huge computational cost); and (ii) it yields very competitive power values as compared with the Wald type tests. Finally, a number of simulation examples and a real data set are used to illustrate and evaluate the proposed method.