透過您的圖書館登入
IP:3.144.134.101
  • 學位論文

以非樞紐統計量為基礎之格蘭傑因果關係檢定

Granger Causality Test Based on Non-pivotal Statistics

指導教授 : 洪英超
本文將於2027/07/05開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


格蘭傑因果關係是一個透過結合向量自迴歸模型中所有變數的資訊 於衡量兩組時間序列間可預測性的經典統計分析工具,傳統分析格蘭 傑因果關係的推論方法為 Wald 類型的檢定方法,然而這些檢定方法可 能會面臨以下問題: 一、需要挑選微調參數,二、當預估測之共變異 數矩陣為奇異矩陣時,用於推論的臨界值會失效。在這篇論文中,我 們發展了一個基於非樞紐統計量的格蘭傑因果關係檢定,此方法不僅 避免了以上兩個問題,相較於 Wald 類型的檢定,我們的方法有更佳的 檢定力,最後我們也通過幾個模擬例子和實際資料分析驗證此方法的 有效性。

並列摘要


Granger causality is a classical tool for measuring predictability from one group of time series to another by incorporating information of variables described by a vector autoregressive (VAR) model. Traditional methods for validating Granger causality are based on the Wald type tests, which may encounter a problem with (i) tuning parameter selection or (ii) test-statistic inflation when the true covariance matrix is singular or near-singular. In this study, we propose an alternative procedure for testing Granger causality based on non-pivotal statistics. The proposed hypothesis testing method is valuable in that (i) it does not require any calibration of tuning parameters (thus saving huge computational cost); and (ii) it yields very competitive power values as compared with the Wald type tests. Finally, a number of simulation examples and a real data set are used to illustrate and evaluate the proposed method.

參考文獻


Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu akaike, pages 199–213. Springer.
Amblard, P.-O. and Michel, O. J. (2011). On directed information theory and granger
causality graphs. Journal of computational neuroscience, 30(1):7–16.
Anderson, T. W. (1963). Asymptotic theory for principal component analysis. The Annals
of Mathematical Statistics, 34(1):122–148.

延伸閱讀