氧化銅為工業應用上非常重要的材料,可應用的領域相當廣泛。隨著奈米材料的發展,奈米氧化銅也已經可以藉由許多不同的方法製備出來。奈米氧化銅可應用的範圍包括氣體感知器、磁性儲存媒體、太陽能電池、電極、半導體、可變電阻、催化劑、鋰離子電池等。近年來,有更多的研究致力於製備不同形狀之奈米氧化銅,而隨著形狀的不同,所應用的方向也有所區別。 當我們能以保護自組裝奈米顆粒的單分子層來達成控制顆粒間距時,便可使用高分子來調整顆粒間距,這樣便可控制一維結構的產生。而要使奈米顆粒形成二維結構,便可以聚合物來保護奈米顆粒,先是形成高分子微胞,再沉積單一粒徑的奈米顆粒。在建構三維結構時,控制組裝系統中的熱力學部分最為重要。當離子互相作用提供了有利於組裝的機制,通常提供了限制以控制所有聚集體結構,因為他們會選擇位置以取得平衡。 本研究主要在於探討不同形貌奈米氧化銅的製備方法。論文中以零維、一維、二維及三維的奈米結構為實驗目標,改變實驗參數如含銅溶液的濃度,界面活性劑的添加量,反應溫度,以及反應時間等,進行一連串的實驗,探討其對奈米氧化銅粉末形貌的影響。 另外,若將此技術應用於印刷電路板的氯化銅蝕刻廢液,可直接從蝕刻廢液中製備出不同形貌之奈米氧化銅,如此能減少印刷電路板廠所產生之含銅廢液,也可提高蝕刻廢液之附加價值。實驗結果發現,氯化銅蝕刻廢液中銅之回收率可高達99.9%。
CuO is one of the most important industrial materials with extensive application, can the realm applying is rather extensive. Many synthesis methods have been developd to prepare nano particles of CuO. Nano Copper Oxide can used to gas sensor, magnetism store media, solar cells, electrode, semiconductor, variable electric resistance, catalyst, lithium ion battery...etc.. In recent years, Many researchers have concentrated on the techuigues to synthesize different shapes of CuO that will determine their applications. The interparticle distances could be controlled through manipulation of the protecting monolayers of self-assembling nanoparticles in terms of separating entities such as polymers. The formation of self-assembly 2D structures, can be constructed by coating nanoparticles with polymer via forming micelles and deposit in stable nanoparticles that are monodispersed. Thermodynamic control plays an important role in formation of 3D self-assembly system. The synthesis of CuO nanoparticles that are with different in shape and belong to 1D, 2D, 3D has been investigated. The effect of Cu2+ concentrate, surfactant, temperate, and reation time on the experimental particle shape of CuO has also been discussion. Leaching solution containing Cu2+ resultant from waste PCB etchant was used as the raw material to produce CuO nano particle.The covery yield of copper from the leaching solution was found to be higher than 99.9%.