透過您的圖書館登入
IP:216.73.216.177
  • 學位論文

新型風扇控制及驅動晶片設計與製作

New Fan Control and Driver IC Design

指導教授 : 黃育賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文提出一個搭載風扇類型自動偵測技術(Fan Type Auto-Detection)的低電壓降電壓調節器(Low Drop-Out regulator; LDO)晶片(Integrated Circuit; IC)。本文提案將電腦系統中常見的三線式直流風扇(3-wire DC fan; Direct Current)及四線式脈波寬度調變風扇(4-wire PWM fan; Pulse Width Modulation)之識別、驅動、與控制整合於單一顆IC內。本文提出的Fan Type Auto-Detection技術可以加入至任何既存的LDO架構與風扇驅動電路。這是目前市面上第一顆具有自動偵測風扇類型與提供對應控制的晶片、也是第一顆整合風扇控制與驅動的晶片。整顆IC消耗約250uA的靜態電流。   附錄介紹學生於2013年提出的一個以LDO晶片為基礎發想的專利提案:具 ‘電腦系統電源時序控制’ 與 ‘節能’ 能力的進階電源管理晶片。此提案的發想動機是為了提供電腦系統使用者一個聰明、節能的電源管理晶片,以及提供系統設計者一個整合、降低開發時間與成本的全解決方案(total solution)。

並列摘要


A low drop-out (LDO) voltage regulator with fan type auto-detection (FTAD) technique is proposed in this paper. Complete analysis and design steps of the FTAD-LDO are presented in this paper. Type detection, drive, and control of 3-wire direct-current (DC) fan and 4-wire pulse-width-modulation (PWM) fan in personal computer (PC) are integrated and implemented in this proposed chip. Proposed FTAD technique could be added and adopted in any existed LDO and fan control/driver integrated circuit (IC). To our knowledge, this is the first chip that can auto-detect fan type and outputs correct control signal, it is also the first chip that highly integrated the control of 3-wire DC fan and 4-wire PWM fan. This chip is implemented in Complementary-symmetry Metal–Oxide–Semiconductor (CMOS) technology and consumes a quiescent current of 250 uA. The appendix of this paper, introduces one on-applying patent proposal that based on LDO chip to implement ‘system power-on/off sequence control’ and ‘power saving’ features for advanced PC system power management. The motive of this proposal chip is in order to deliver intelligent and green-power experience to end-user, and provide one total solution to save cost and development time for system designer.

參考文獻


[1] S. C. Lee, Y. D. Jeon, J. K. Kwon, and J. Kim, “A 10-bit 205-MS/s 1.0-mm2 90-nm CMOS pipeline ADC for flat panel display applications,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2688–2695, Dec. 2007.
[2] T. Toifl, C. Menolfi, P. Buchmann, M. Kossel, T. Morf, and M. L. Schmatz, “A 1.25-5GHz clock generator with high-bandwidth supply-rejection using a regulated-replica regulator in 45-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2901–2910, Nov. 2009.
[3] A. Arakali, S. Gondi, and P. K. Hanumolu, “Analysis and design techniques for supply-noise mitigation in phased-locked loops,” IEEE Trans. Circuits Sys. I: Reg. Papers, vol. 57, no. 11, pp. 2880–2889, Nov. 2010.
[4] T. Senanayake and T. Ninomiya, “An improved topology of inductor-switching DC-DC converter,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 869–878, Jun. 2005.
[5] L. Corradini, P. Mattavelli, E. Tedeschi, and D. Trevisan, “High-bandwidth multisampled digitally controlled DC–DC converters using ripple compensation,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1501–1508, Apr. 2008.

延伸閱讀