本論文之研究主要針對315.00 MHz數位射頻收發機之雙向通訊進行韌體研究與設計,其中包含無線數據封包 (Wireless Data Packet) 編碼、解碼之收發系統設計,以及進行射頻收發機最佳化調整。其中無線數據封包之格式如下述:前導碼 (Preamble)、同步碼 (Sync. Header)、資料欄位 (Payload Data)、訊框檢查序列 (Frame Check Sequence;FCS) 和停止位元 (Stop Symbol)。 在無線通訊通道中干擾和雜訊是無可避免的,因此使用微控器作為數位訊號處理,使得系統本身要具備有抗干擾及抗雜音的能力。此外,使用循環冗餘檢查去驗證資料位元,並判斷檢查資料位元於接收過程中是否有錯誤產生。在資料安全機制方面,則使用AES-WC的加密與解密演算法進行資料保密。接著,訂定合適的雙向無線通訊協定,以能順利達成雙向乒乓通訊。最終將微控器和射頻收發模組做整合,並於開放空間完成單向與雙向的距離測試,以上內容在本文章節中將會詳細探討。
This thesis is devoted to the investigation and implementation of an 315.00 MHz two-way digital RF transceiving system, including design of the two-way communication firmware encoding/decoding algorithms associated, performance optimization of the RF transceiver module used. The format of the wireless data packet includes the following various fields: preamble, sync. header, payload data, frame check sequence, and stop symbol. Since the interference and the noise over the air are ubiquitous, the anti-interference signal transmission and reception are definitely essential for a reliable digital wireless communication link. The DSP (Digital Signal Processing) techniques by uC-based firmware are utilized to help enhance noise-robustness. In error detection, a CRC (Cyclic Redundancy Check) checksum can be verified by again calculating the CRC checksum of the data and comparing the result with the checksum provided with the data. In data security, the algorithms of AES-WC encryption/decryption are used so that the data can be kept confidential. Then, the ping-pong communication can be successfully accomplished by using the appropriate two-way wireless communication protocol. The microcontroller and RF transceiver module are finally integrated and put to 1-way and 2-way range test in open site . Above contents will be discussed in detail in following sections.