透過您的圖書館登入
IP:216.73.216.237
  • 學位論文

使用Google街景圖與SURF及顏色特徵之城市特色建築物辨識系統

A Distinctive Urban Buildings Recognition System Using the Google Street View with SURF and Color Features

指導教授 : 張厥煒

摘要


建築物不管在藝術文化、歷史意義以及民生需求,在世界各地都占有其重要的地位。若是可以從中找出建築物特有的特徵,對於藝術文化以及建築史的演進的數位典藏,可以有其助益。特別是在現在智慧型手持裝置的盛行,若是可以從手持裝置的攝影機捕捉到身邊的建築物影像,藉由建築物的辨識得到相關的資訊,如果可以做出一些有趣的應用,對於文化推廣以及觀光產業有很大的幫助。近年來對於物件辨識的方法發展迅速,以及Google Street View的出現,世界上每個角落都有了最完整的影像資料,對於建築物的辨識又是一大利器。 本論文藉由對於台灣都市中建築物的觀察,使用SURF以及顏色等特徵透過影像處理的方式從Google Street View中擷取出特色建築物的特徵,針對不同角度、光線、非完整建築物的建築物照片進行比對辨識。

並列摘要


In the sense of culture, art, and history meaning, buildings have played an important role in our lives. If we can retrieve unique features that can describe a building, it might have some benefits for architecture history or digital resources of architecture. As the popularity of smart mobile devices, if we could have some interesting application for getting information of buildings around user, captured in any direction and view, it must be a great help for the promotion of culture and tourism industry. In this paper, I propose a system using SURF and color features for distinctive buildings in Taipei. This system using Google Street View’s image for feature learning database .Based on the research of buildings’ characteristics in Taiwan, the recognition system can identify buildings robustly in different scales, rotation, and partial building’s image in this system.

參考文獻


[1] Levitt, S., Aghdasi, F., “Texture Measures for Building Recognition in Aerial Photographs,” Proc. of South African Symposium on Communications and Signal Processin, 1997, pp.75-80.
[2] Michaelsen, E. FGAN-FOM, Ettlingen ,Doktorski, L., Soergel, U., and Stilla, U., “Perceptual Grouping for Building Recognition in High-resolution SAR Images using the GESTALT-System,” IEEE Urban Remote Sensing Joint Event, 2007, pp.1-6.
[3] A. Thiele, E. Cadario, K. Schulz, U. Thoennessen and U. Soergel ,“Building Recognition Fusing Multi-Aspect High-Resolution Interferometric SAR Data,” IEEE Intl. Conf. on Geoscience and Remote Sensing Symposium, 2006, pp.3646-3647.
[4] Antje Thiele, Erich Cadario, Karsten Schulz, Ulrich Thonnessen, and Uwe Soergel ,“Building Recognition From Multi-Aspect High-Resolution InSAR Data in Urban Areas,” IEEE Trans. on Geoscience and Remote Sensing, vol.45, 2007,pp.3583-3593.
[5] Keyan Ren, Hanxu Sun, Qingxuan Jia, and Jianbo Shi, “Building Recognition from Aerial Images Combining Segmentation and Shadow,” IEEE Intl. Conf. on Intelligent Computing and Intelligent Systems, vol.4, 2009,pp.578-582.

延伸閱讀