本文旨在設計及製作以數位信號處理器為基礎,具有隔離高頻變壓器之功率轉換器研製,以做為蓄電池供電系統與市電系統之充、放電控制應用。在隔離型直流-直流轉換器之昇壓模式採用推挽式架構,減少功率電晶體的元件;在隔離型直流-直流轉換器之降壓模式採用全橋式架構,可降低功率電晶體之電壓突波。單相直流-交流轉換器採用電壓迴授控制策略,使其輸出電壓穩定不受負載側之負載變動影響。 本文使用模擬軟體PSIM分析系統在各種操作模式之控制策略,以作為數位控制器之設計依據。在實體製作上,本文之系統以高性能、低成本的數位信號處理器TMS320F28035為整體系統之控制核心,藉電壓、電流回授至數位信號處理器做運算,使用電壓閉迴路控制策略,完成整體系統之實體製作。放電時蓄電池先由隔離型直流-直流轉換器將電壓昇至200V DC,再經由單相直流-交流轉換器與市電110V AC併網,充電時市電先由橋式二極體將電壓整流,再經由隔離型直流-直流轉換器將電壓降至24V DC對蓄電池進行充電。本文已完成200W之系統雛型,系統效率為82%,實測結果與理論相驗證。
This thesis is focused on the design and implementation of a digital-signal- processor based bi-directional power converter with insulated high frequency transformer. This converter can be used as a battery power supply system, charging and discharging control applications for electricity system. In the isolated DC-DC converter boost mode, the push-pull architecture is adopted to reduce the power transistor components. In the isolated DC-DC converter buck mode, the full-bridge architecture can reduce the voltage spike on power transistor. The single-phase DC-AC power converter uses voltage feedback control strategy and thus the output voltage is not affected by load change. Using PSIM, This thesis analyzes and simulates the control strategies of the proposed system in various operating modes. The simulation results can be used for the digital controller design accordingly. The high performance and low cost digital signal processor TMS320F28035 is used as the control core while implementing the converters. With the feedback of voltage and current to a digital signal processor, the digital controller calculates the control signal to complete voltage closed-loop control strategy. In the discharge mode, the insulated DC-DC converter boost the battery voltage to 200V DC, then connects to 110V AC power grid by the single-phase DC-AC converter. In the charge mode, 110V AC is rectified by the bridge diode circuit, then reduced to 24V DC by the insulated DC-DC converter to charge the battery. Finally, this thesis develops a 200W system prototype. The overall efficiency is 82% and the experimental results verify the theoretical analysis.