透過您的圖書館登入
IP:18.119.0.207
  • 學位論文

利用明確狀態加快模糊控制反應時間之收斂速度

UTILIZE CRISP STATUS DECREASE RESPONSE TIME OF CONVERGENCY IN FUZZY CONTROL SYSTEM

指導教授 : 黃朝章
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


自動控制在目前是一個趨勢,可以取代大量的人工並且提高產能。早期的控制器是採用數學模式建立控制行為。以數學模式為基礎的控制器,僅只是用近似方式描述期望之系統功能而已,越複雜的系統數學模式越不容易去描述,不但如此,過於複雜的計算亦會使受控系統的效能下降,或延長控制器反應時間而造成系統失誤甚至失效。為了改進傳統控制器的缺點。進而研發模擬人類行為模式的控制器,也就是擁有人工智慧的控制器的模糊控制器和類神經網路控制器。模糊控制器亦是以人類的思考模式為基礎,其著重在於控制系統反應的速度快和簡單性。 在模糊控制系統中影響反應速度的兩個重大的因素有二個來源一個是歸屬函數,另一個是模糊控制規則,其實這二個因素是構成模糊控制系統兩大部份,一般我們在針對控制的目標物,一定要對其變量做一些偵測,並由所取得的數據加以分析後,利用歸屬函數的功用,將未確定的數值狀態量化成明確值,可供下一步模糊控制規則做出策略控制,本篇論文所要探究的是要如何利用一些非受控制目標物的狀態,或是一些明確狀態輔助歸屬函數,和調整模糊控制邏輯加快受控制系統反應的收斂速度。

並列摘要


Two important sources affecting the reaction speed of Fuzzy Control System are membership functions and fuzzy control rules. Actually, these two elements are also two major parts of constructing the Fuzzy Control System. In general, when we are going to control a target, we could extract data calculated from the prediction on its variables. These data are analyzed and be used as membership functions to evaluate a precise value for the variation that can provide a further step for procedural operation of Fuzzy Control System. This thesis investigates how to use states of the uncontrollable target or some crisp states of membership functions, and adjust the fuzzy control logic to decrease the response time of the controllable target. Finally, we would use a practical electricity switching power system to compare the efficiency the traditional fuzzy control system and with consider these.

參考文獻


【4】L. A. Zadeh, “ Fuzzy Sets,” Information and Control, Vol. 8, pp. 328-353, 1965.
【6】L. A. Zadeh, “Fuzzy Logic,” Computer , Volume: 21 Issue: 4 , April 1988 Page(s): 83 -93
【7】L. A. Zadeh, “Outline of a new approach to the analysis of complex system and decision processes,” IEEE Trans. On Systems, Man, and Cybernetics, SMC-1, pp. 28-44, 1973.
【9】T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. On System, Man, and Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985.
【10】M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy sets and System, Vol. 28, pp. 15-33, 1988.

延伸閱讀