透過您的圖書館登入
IP:3.133.119.75
  • 學位論文

512至2048位元可變長度之RSA加解密系統之設計與研製

The Design and Implementation of a 512~2048 bit Scalable RSA Encryption/Decryption System

指導教授 : 吳紹懋
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文中我們研製了一個512位元到2048位元可變長度的RSA公開金匙加解密器;我們使用了H演算法將RSA系統的的指數與模運算(Y=ME mod N)轉換成一連串的蒙哥馬利運算;在此我們可以用16位元的蒙哥馬利模組組合出任何位元的蒙哥馬利單元,而每個模組間採用了高度的管線化設計,使得執行一次n位元的蒙哥馬利運算的時間複雜度為O(n)。而控制單元共有256位元、512位元、1024位元、和2048位元四種操作模式,配合同位元數之模組化蒙哥馬利單元即可成為一個完整的RSA加解密器。 此系統的系統時脈為25MHz,從Altera CPLD 6K系列上的模擬結果得知,每完成一個n位元的RSA加密或是解密運算花費大約3*n2時脈週期,如果以512位元來計算,則需要3*5122個時脈週期來完成一次的加密或是解密運算。

並列摘要


In this thesis we design a 512-bit to 2048-bit scalable RSA public key encryption/decryption system. The H algorithm is used to translate the modular exponentiation in a RSA cryptosystem into a sequence of Montgomery’s operations. And we can combine several 16-bit Montgomery’s modules into a complete Montgomery’s unit which can achieve n-bit Montgomery’s operation, where n can be any bit number of keys. The Montgomery’s Unit is designed in a fully pipelined architecture. Its complexity of time is O(n). And the Control Unit is designed in 256-bit, 512-bit, 1024-bit, and 2048-bit modes. It’s a complete RSA cryptosystem when the Control Unit is combined with a modularized Montgomery’s Unit with suitable bit length. The system clock is set to 25MHz. From the simulation result of Altera CPLD 6K series, it takes about 3*n2 clocks to finish an operation of a n-bit RSA encryption or decryption. For example, each encryption or decryption will take about 3*5122 clocks to calculate in a 512-bit RSA cryptosystem.

並列關鍵字

RSA Scalable pipelined modularized Montgomery's algorithm H algorithm

參考文獻


[4] W. Diffie and M. E. Hellman, “Privacy and Authentication: An Introduction to Cryptography,“ Proceedings of the IEEE, Vol. 67, No.3, pp.397-427, Mar. 1979.
[5] Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley & Sons, Inc., 1994.
[8] Eldridge, C.D. Walter, “Hardware implementation of Montgomery’s modular multiplication algorithm,” IEEE transactions of Computers, Vol. 2, pp. 693-699, June 1993.
[9] Chen, C.W. Wu, “VLSI Implementation for a Systolic RSA Public Key Cryptosystem,” Thesis Work of Po-Song Chen, National Tsing Hua University, 1996.
[10] Yang, C.W. Jen, and T.S. Chang, “The IC Design of a High Speed RSA Processor,” Proceedings, IEEE Asia Pacific Conference on Circuits and Systems 96, pp. 33-36, 1996.

延伸閱讀