色彩對視覺而言是ㄧ項非常重要的資訊,人眼所感受到的影像資訊可較切實的由亮度、色調和飽和度來做為表示。為了光學彩色圖像辨識之研究,我們提出一個較接近於人眼視覺感受的HSV色彩模型。 本論文主要目的在探討圖像亮度對辨識效果的影響,以雙通道聯合轉換相關器做為實現彩色圖像辨識的架構。將RGB色彩模型下的目標圖像轉換到HSV色彩模型,其中只取用色調和飽和度兩個成分做為輸入平面的圖像資訊。我們將針對目標圖像的旋轉、加入雜訊和合成參考圖像的量化等情形分別探討原目標圖像和亮度減小的目標圖像之辨識效果。結果顯示目標圖像亮度的改變並不會對辨別的結果產生影響,並且能精準的辨識圖像。
Color is one of the most important information for vision. Human vision can be described in various color model forms, e.g. RGB color model, YIQ color model and HSV color model. The HSV color model is closer to the description of human sight sensation. Therefore, we propose a two-channel joint transform correlator based on HSV color model to achieve pattern recognition. In the thesis we consider different intensities on target pattern for recognition in various situations. The target pattern is transformed from RGB to HSV color space. We choose hue and saturation components to be the target pattern for recognition in the input plane. Afterward, we recognize the target pattern, which may be rotated, added noise and in a realistic background. The numerical results indicate that the device have nice recognition capability. On the other hand, the proposed architecture has an important result -- the intensity variation on target pattern will have no effect on recognition ability.