透過您的圖書館登入
IP:216.73.216.237
  • 學位論文

在聚乙二醇-水系統中直接使苯胺與芳香烯丙醇類進行鈀催化烯丙基化反應

Direct Palladium-Catalyzed Allylation of Anilines with Aromatic Allylic Alcohols in PEG-H2O System

指導教授 : 楊世群
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


鈀金屬催化烯丙基化反應被證實是一個有效的方法,對於碳-碳、碳-氮、碳-氧鍵的形成具有高度的立體與位向選擇性,並且廣泛的被應用在有機化學上。這類催化反應指出經過親核性試劑攻擊由烯丙基化合物與鈀金屬(0價)錯合物進行氧化性加成所形成中間體??3-烯丙基鈀(II價)錯合物的過程,而這些烯丙基化合物包括烯丙基鹵化物、乙酸烯丙酯、烯丙基碳酸等。由於這些烯丙基化合物是以烯丙基醇類為基礎所合成的,因此利用鈀金屬催化使烯丙醇類直接進行烯丙基化反應是有利的,特別是在原子經濟學的觀點上。為了達到鈀金屬催化烯丙基醇類碳-氧鍵的斷裂,也有許多不同促進鍵斷裂的方法被報導出來。在水和聚乙二醇中進行有機反應近來備受關注,因為水和聚乙二醇對於傳統有機溶媒是一種安全,經濟的替代品。 在本研究中,我們利用苯胺類化合物與烯丙基醇類利用鈀催化在聚乙二醇-水系統中進行烯丙基化反應。在苯胺上進行氮-烯丙基化反應將被實現。

並列摘要


Palladium-catalyzed allylation is an established, efficient, and highly stereo- and chemoselective method for C-C, C-N, and C-O bone formation, which has been widely applied to organic chemistry. The processes have been shown to proceed by attack of nucleophiles on intermediate ??3-allylpalladium(II) complexes generated by oxidative addition of allylic compounds including halides, acetates and carbonates to a Pd(0) complex. Because these substrates are synthesized form the corresponding allylic alcohols, palladium-catalyzed conversion of allylic alcohols directly into allylation products is highly beneficial, especially from the viewpoint of the atom economy. For achieving the palladium-catalyzed C-O bond cleavage of allylic alcohols, various other processes to facilitate the bond cleavage have been reported. Organic reactions in water and polyethylene glycol have recently attracted much attention, because water and polyethylene glycol is a safe and economical substitute for conventional organic solvent. In this study, we carried out the allylation of anilines with allylic alcohols in PEG-H2O system in the presence of palladium as catalyst. N-allyation of anilines was achieved.

並列關鍵字

palladium allylation PEG-H2O anilines allylic alcohol

參考文獻


1.Bergdahl, M.; Hett, R.; Friebe, T. L.; Gangloff, A. R.; Iqbal, J.; Wu, Y.; Helquist, P. Tetrahedron Lett. 1993, 34, 7371.
2.Prashad, M. J. Med. Chem. 1993, 36, 631.
3.Walsh, C. Tetrahedron 1982, 38, 871.
4.Tan, K.-T.; Chng, S.-S.; Cheng, H.-S.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 2958.
5.MacKenzie, C. A.; Spialter, L,; Schoffman. RI. French Patent 961, 816; Nov. 28 1949.

延伸閱讀