過去的數十年來,超分子化學不斷的發展;其中分子方形這一類的超分子,能藉由修飾金屬角形和橋接配位基,來改變分子的大小,性質。特別令人感到興趣。分子方形主要的應用,著重在分子感測器,氣體儲存等。過去常見到的金屬自聚合反應,大部分皆是以含氮雜環分子一類,作為主要的橋接配位子。因此,嘗試使用1,4-diisocyanobenzene和1,4-Diisocyano-2,5-dimethylbenzene這類的配位子,與錸金屬羰基化合物Re(CO)5Br,合成一系列的錸金屬羰基異氰基化合物。分別為單核的錸金屬羰基異氰基化合Re(CO)3Br[1,4- (CN)2-C6H4]2 (3), Re(CO)3Br[1,4-(CN)4-2,5-(CH3)2-C6H2]2 (4) ,以及四核的錸金屬羰基異氰基化合物 [Re(CO)3Br]4[??-1,4-(CN)2-C6H4]4 (1a) , [Re(CO)3Br]4[??-1,4-(CN)2-2,5-(CH3)2C6H2]4 (2a), ([Re(CO)3(CH3CN)]4[??-1,4-(CN)2-C6H4]4)4+ (5a) , ([Re(CO)3(CH3CN)]4[??-1,4-(CN)2-2,5-(CH3)2-C6H2]4)4+ (6a)。 而在合成四核徠金屬羰基異氰基化合物時,更意外的得到三核錸金屬羰基異氰基化合物 [Re(CO)3Br]3[??-1,4-(CN)2-C6H4]3 (1b) , [Re(CO)3Br]3[??-1,4-(CN)2-2,5-(CH3)2C6H2]3 (2b),([Re(CO)3(CH3CN)]3[??-1,4-(CN)2-C6H4]3)3+ (5b) , ([Re(CO)3(CH3CN)]3[??-1,4-(CN)2-2,5-(CH3)2-C6H2]3)3+ (6b)因此藉由此次的研究,以不同的反應路徑,以及當量數的差異。嘗試合成不同的錸金屬羰基異氰基化合物,並由IR、NMR、FAB、ESI等去了解其中的結構變化與性質差異。
Over the past decades, supramolecular chemistry has impressive progress toward to molecular sensing, ion sequencing and gas molecular storage. Metal-directed self-assembly base on 4,4-bipyridine bridging have been widely used to construct supramolecular systems. However, using isocyanides as subunits in the formation of supramolecular compounds have been seldom studied. A series of tetranuclear rhenium tricarbonyl triisocyanide complexes [Re(CO)3Br]4[1,4-(CN)2-C6H4]4 (1a) , [Re(CO)3Br]4[1,4-(CN)2-2,5-(CH3)2-C6H2]4 (2a) , ([Re(CO)3(CH3CN)]4[??-1,4-(CN)2-C6H4]4)4+ (5a), ([Re(CO)3(CH3CN)]4[??-1,4-(CN)2-2,5-(CH3)2-C6H2]4)4+ (6a) were synthesized from the mononuclear complex Re(CO)5Br in acetonitrile at reflux condition. Those complexes were fully characterized by IR, 1H-NMR, 13C-NMR spectroscopy, FAB and ESI-mass.