目前各個主要工業國家都著力於研究高效能電機的研發,追求電機之運轉性能提升。其中,感應電動機雖已普遍應用於工業各項動力市場,具有結構強與容易驅控等優點。近年來因工具機主軸高速化需求,電機設計在運轉速度與效能難以兼顧的條件下,使得高速感應電動機之研發日趨熱絡。有鑒於此,本論文將選擇高速電動機用之高頻矽鋼片以各式繞組參數、定轉子槽配合以及定轉子槽型幾何參數搭配優化進行初步設計,以提升高速化電動機之各式性能。 本文針對工具機主軸之高速感應電動機為研究目標,探討基礎感應電動機設計法則,考慮工具機之負載需求,規劃電動機設計流程與計算設計參數,分析並建構電機系統模擬之規劃,以調整繞組以及槽型結構為基礎背景,進行氣隙諧波磁場分佈與定子齒部徑向電磁力波探討,經優化後得出最適電機幾何尺寸、槽極數、定轉子槽數比、槽型及繞組,期望降低高速轉動時產生的電機振動及噪聲並優化主軸電機性能。研究過程採用美商ANSYS公司之RMxprt®、Maxwell 2D/3D®及Mechanical Workbench分析商用套裝軟體,以數值計算其物理量與電磁場分佈,針對電機之動態分析指標參數進行討論並進行電磁與結構耦合分析,最後以實驗室之銅轉子感應主軸馬達進行設計參數驗證,確定電機設計之正確性與實現性。
This thesis aims at high-speed induction motors applied to the machine tool spindles covering topics of basic motor design rules, motor design steps, selection of design parameters, and Computer-Aided Engineering simulation processes. Based on adjusting the winding and slot structure, magnetic field distribution in air gap and relavent radial electromagnetic forces on stator tooths are carefully reviewed. Throughout optimization, the optimal geometry, the slot numbers, diametric ratio of stator and rotor, and turns of winding are calculated; and, the ultimate goal is to reduce vibration and acoustic noises plus performance for spindle motors running at high speed. The study has been adopting a commercial software package copyrighted by ANSYS Inc., bundled with Electronics EM and Mechanical Workbench, for numerical simulation of physical quantities and electromagnetic field details. By preliminary correlation of results in magnetostatic and transient field analysis, electromagnetic and structural coupling analysis is cosimulated to give cross-coupling acoustic and vibrational results. Finally, verifications of the design parameters have been conducted for laboratory-scale copper rotor induction spindle motors to justify the accuracy and practicality of the motor design process.