本論文旨在提出考量電池放電深度及壽命的學習式能源管理策略,其策略會考量電池放電深度與電池壽命之間的抉擇。過去因為缺乏電池放電深度對應電池耗損邊際成本的模型,通常會忽略電池放電深度及電池壽命對能源管理策略的影響。此篇論文中,我們提出一個新穎的電池成本計算方法,其考慮到每次電池使用的放電深度,此方法將會用於設計使用強化學習及線性值函數近似法之日前能源管理策略。此能遠管理策略將決定要從日前市場購買多少能源供給下一日使用。此論文提出之能源管理系統將使用最小平方策略迭代法及次狀態策略迭代法學習能源管理策略,最小平方策略是用於值函數的線性近似,而次狀態策略迭代法是用於下一天系統參數的預測。此論文的模擬是基於實際的非商用單一家庭負載、日前電價、即時電價及再生能源模擬器。考慮電池充放電的代價更能提供能源管理系統精確的整體系統花費,使能源管理策略能同時顧慮購電成本及電池壽命成本。
This work proposes a learning-based energy management policy that takes into consideration the trade-off between the depth-of-discharge (DoD) and the lifetime of batteries. The impact of DoD on the energy management policy is often neglected in the past due to the inability to model its effect on the marginal cost per battery usage. In this work, a novel battery cost evaluation method that takes into consideration the DoD of each battery usage is proposed, and is utilized to devise the day-ahead energy management policy using reinforcement learning and linear value-function approximations. The policy determines the amount of energy to purchase for the next day in the day ahead market. A least-square policy iteration (LSPI) with linear approximations of the value function is used to learn the energy management policy. Simulations are provided based on real load profiles, pricing data, and renewable energy arrival statistics. The consideration of the battery cost due to DoD provides a more accurate evaluation of the actual energy cost and leads to an improved energy management policy.