透過您的圖書館登入
IP:18.190.207.23
  • 學位論文

消除瑞利反向散射機制與被動解偏振多工接收之光學多頻帶正交分頻多工被動光學網路系統

Rayleigh Backscattering Cancellation Mechanism and Passive Polarization Division De-multiplexing Receiving in a Multiband DDO-OFDM PON System

指導教授 : 馮開明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著消費性電子產品的普及與網路使用習慣的改變,近年來訊號的傳輸速率比起往年呈現指數型增長,隨之而來的硬體升級亦是建置成本上的一大挑戰。在都會型網路的架構中,如何沿用現有的硬體並提升資訊傳輸量,並以低成本實現用戶端的接收與上傳,是現在網路系統中熱門的議題。 本論文首先敘述DDO-OFDM的產生與接收原理,再描述被動光學網路的演進與OFDM PON的優勢。以多頻帶DDO-OFDM作為基底,應用於被動光學網路的架構中作為下傳,並搭配多頻帶Nyquist QPSK上傳,完成一套PON的系統。在實驗上證明在同一光纖中傳輸時,操作時同波長的上下傳訊號會因瑞利反向散射(Rayleigh backscattering)而影響訊號品質,並提出一套可以迴避瑞利反向散射的模型運用在PON之上,並進一步擴展成八通道的WDM系統。此外,為再提升訊號傳輸量,論文中提出一套可相容於原系統上的被動偏振多工模組,並與主動的偏振多工系統相比較,使系統提升一倍的傳輸效率。

並列摘要


In recent years, with the popularity of consumer electronics products and network usage, the data rate of signal transmission has been increasing exponentially. How to upgrade the hardware while remaining low cost is a challenge. Therefore, It is a hot topic to enhance the data rate on existing hardware. So that, the transiver cost of network users can be reduced. In this thesis, we explained the generation and reception of DDO-OFDM, the evolution of passive optical network (PON) and the advantage of OFDM PON. Then, the PON system was realized based on multi-band OFDM downstream and multi-band Nyquist QPSK upstream. In the PON system, we verified the Rayleigh backscattering (RBS) interferes between upstream and downstream signals if signals ware operated in the same frequency and fiber. Then, we proposed and demonstrated a model that could avoid RBS in a combined bi-directional system. By this system, eight channels WDM system has been realized. Beside, we demonstrated a passive polarization division multiplexing (PDM) receiving system, which can double the data rate in the existing PON system.

參考文獻


[2] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission,” Bell System Technology Journal 45(10), pp. 1775-1796 (1966)
[3] S. J. Savory, “Digital signal processing options in long haul transmission,” in Optical Fiber Communication Conference, paper OTuO3, San Diego (2008)
[4] Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Optics Express 17(11), pp. 9421-9427 (2009).
[5] J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonic Technology Letter 23(15), pp. 1061-1063 (2011).
[6] W. R. Peng, I. Morita, H. Takahashi, and H. Tanaka, “Transmission of high-speed (> 100 Gb/s) direct-detection optical OFDM superchannel,” Journal of Lightwave Technology 30(12), pp. 2025-2034 (2012).

延伸閱讀