互相獨立的漢米爾頓迴圈已經在連結網路上有著廣泛研究。在本篇論文中,我們針對一些特定的圖形上的互相獨立漢米爾頓迴圈性質做研究,包括:當 $k$ 為偶數之 $k$ 位元 $n$ 維度立方體$(Q_{n}^{k})$、迴圈合成網路$(CCN_k)$、交錯群圖$(AG_n)$以及排列圖$(A_{n,k})$上互相獨立的漢米爾頓迴圈的建構。我們所得的結果為最佳的,意即我們所建構的獨立漢米爾頓迴圈數是最多的。 除了上述特定圖形中互相獨立的漢米爾頓迴圈的建構方法之外,我們也希望能對一般的圖形上互相獨立的漢米爾頓迴圈的存在性找到它們的充分必要條件。根據已知的結果,我們也得到了一個猜想。
Abstract Mutually independent hamiltonian cycles, abbreviated as MIHCs, have been studied on interconnection networks widely. In this dissertation, we study MIHCs on some specific graphs. We established the existence of MIHCs in $k$-ary $n$-cubes $(Q_{n}^{k})$ when $k$ is even, cycle composition networks $(CCN_k)$, alternating group graphs $(AG_n)$ and arrangement graphs $(A_{n,k})$. The results are shown to be optimal in the sense that the number of MIHCs we constructed is maximal. In addition to the construction schemes of MIHCs for specific graphs, we intend to give some sufficient and necessary conditions for the existence of MIHCs in general graphs. A conjecture is given based on known results.