透過您的圖書館登入
IP:3.23.102.227
  • 學位論文

非破壞性奈米互連線寬度及厚度萃取

Non-destructive Extraction of Inter-Connect Width and Thickness for Nanometer Technology

指導教授 : 謝財明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著超大型積體電路(Very Large Scale Integrated Circuit, VLSI)技術的快速發展以及製程能力的進步,半導體世代已由深次微米製程邁入奈米製程。由於interconnect的尺寸微縮以及堆疊的金屬層增加、銅製程技術的採用、SOC設計觀念的引進及高頻晶片的需求增加,使得原本不被重視的寄生效應,如今卻因為超過十層、超過百萬條複雜連線,而成為IC設計中,影響電路效能,訊號整合及可靠度的重要因素之一。所以,如何有效並正確地估算複雜度提高的寄生效應,成為一個困難的挑戰。 利用充電原理之電容量測法(CBCM)和Kelvin所發展的電路架構,已被應用在互連線(inter-connect)寬度及厚度之非破壞性萃取。首先,WEE (wire edge enlargement) 在BEOL (back-end-of-line) 設計與先進製程中,扮演了必要的角色。而關於線寬偏差程度(bias)或WEE參數,我們都可以藉由只透過電性與非破壞性的量測方法,完整地萃取並製成一精確表格。其次,平行板電容定律可以幫忙萃取出金屬層和介電層的厚度。最後,我們將上述萃取出的參數,代入我們所提出的計算電容值的公式分析,發現結果和實際量測的電容值相當吻合,誤差皆在5%以內。

並列摘要


Semiconductor generation have made great strides from deep sub-micro towards nano-technologies by making great progress in VLSI (Very Large Scale Integration) and advanced processes. It results in reducing interconnect size, adding stack of metal layers, adapting Cu-based technologies, leading into SOC (System on Chip) design concept, and increasing high frequency chip requirement. As a result parasitic effect, ignored in the past but considered due to large number of layers and interconnections, is now the key factor of circuit performance, signal integration, and reliability for IC design. How to evaluate and calculate complex parasitic problems precisely, therefore, will be the difficult challenges. The charge-based capacitance measurement (CBCM) and Kelvin test structure were used for non-destructive extraction of inter-connect width and thickness is demonstrated. Initially, by our electrical-only and non-destructive methodology, an accurate table of width bias or WEE (wire edge enlargement), which is necessary for back-end-of-line (BEOL) design on advanced nanometer technology, can be fully extracted. Secondly, metal and inter-dielectric layer thickness can be extracted by using the equation of parallel capacitance. Finally, we input extract parameters to an analytic formula of capacitance and the value shows better than 5% agreement with the capacitance from the measurement.

參考文獻


[1] M. Aoyagi, et. al, IEEE Applied Superconductivity, pp381-384, 2001.
[6] Nagaraj Ns et. al., “BEOL Variability and Impact on RC Extraction,” ACM/IEEE DAC, pp. 758- 759, 2005.
[7] Kapur, P et al., “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Transactions on Electron Devices, pp.590-597, 2002.
[8] Bodammer, G.K.H, “Evaluation of sheet resistance and electrical linewidth measurement techniques for copper damascene interconnect,” IEEE Transactions on Semiconductor Manufacturing, pp. 214-222,2002.
[9]T. Kunikiyo et. al., “Non-Destructive Inverse Modeling of Copper Interconnect Structure for 90nm Technology Node,” SISPAD, pp. 31- 34, 2003.

延伸閱讀