透過您的圖書館登入
IP:3.22.194.5
  • 學位論文

電商推薦系統對台灣喪事產品之網路購買意願影響研究

E-commerce recommendation system for Taiwan funeral products Research on the Influence of Online Purchase Intention

指導教授 : 王如鈺

摘要


對台灣來說,喪事文化是種非常貼近生活的傳統儀式,對人民有根深蒂固的影響且不會輕易地消失,隨著網際網路的發展,眾多產業都積極使用電子商務系統與其推薦系統來增加銷售通路,因此,許多喪事禮儀業者也嘗試加入電子商務這行列,或許在是否能藉由電商與推薦系統來增加銷售量未有結論,但經由本研究針對電商推薦系統對台灣喪事產品之網路購買意願影響研究,其探討之目的:一、消費者使用電商推薦系統,對於購買喪事產品是否提升購買意願,二、電商推薦系統於喪事產品購買中運用,是否受屬於實體產品或是服務,而干擾其購買意願,三、消費者的人口統計變項與宗教信仰差異,是否影響對於購買喪事產品購買意願。最後,希望可以提供現在與未來喪事相關業者在建立電商平台時,一些內容與推薦系統的建議,做為參考。 本研究針對台灣20歲以上了解喪禮者,透過網路問卷方式蒐集資料,共蒐集188份有效問卷,經由SPSS統計軟體針對電商平台特色、人口統計變數與宗教信仰進行信度分析、迴歸分析、變異數分析及T檢定,作為本研究之分析結果。 根據本研究之結果為:一、電商平台特色會影響網購不同喪事產品屬性的購買意願之關鍵要素為電商平台之產品面特色;其細項則分別為產品種類、產品評價與產品價格,二、人口統計變數會影響網購不同喪事產品屬性的購買意願之關鍵要素為收入,三、宗教信仰會影響網購不同喪事產品屬性的購買意願之關鍵要素為宗教信念,四、電商推薦系統功能,干擾人口統計變數對網購喪事產品屬性對購買意願的影響之關鍵要素為家庭型態,五、電商推薦系統功能,干擾宗教信仰對網購喪事產品屬性對購買意願的影響之關鍵要素為宗教信仰程度。綜合上述結果,本研究也提供管理意涵以及提供後續研究的建議,在學術上,除了開啟研究喪事產品之網路行銷,也希望能提供喪事相關業者在使用電商平台與推薦系統中,實質上的建議與結果。

並列摘要


The funeral culture which has become a part of our life in Taiwan, and it is deeply ingrained and has huge influence in our society for each one. While the Internet has become popular, most industries have positive used e-commerce systems and their recommendation systems to increase sales channels; therefore, many of industries who work for funeral have tried to use the e-commerce. Whether or not, we could not know if the e-commerce could enhance the sales; however, according to this research there are three purpose. First, whether consumers will enhance their willingness from using e-commerce recommendation system to purchase funeral products. Second, the use of e-commerce recommendation system in the purchase of funeral products; whether, interfere consumers’ purchase intention to buy between with physical products or services. Third, whether the differences in consumers between demographic variables and religious beliefs which affect their willingness to purchase funeral products. Last, according to the research, to provide existing and future market trader some suggestions about recommendation systems and its content when they establish e-commerce platforms. The study using online questionnaires, 188 were collected and leave valid, to gather information about investigating people who over twenty years old that understand funerals in Taiwan. The result of the analysis, though SPSS statistical software was used to conduct reliability analysis, regression analysis, variance analysis and T test, to analysis on the characteristics of e-commerce platforms, demographic variables, and religious beliefs. The results of the study showed: 1. The characteristics of the e-commerce platform especially product features including the product pricing, product evaluation and types of product, will affect the purchase intention of different funeral products on the Internet. 2. Demographic variables especially income, will affect online purchases of purchase intention about different funeral product attributes. 3. Religious beliefs especially religious belief, will affect online purchases of purchase intention about different funeral product attributes. 4. The function of the e-commerce recommendation system, interferes in demographic variables especially family type, that influence product attributes on online shopping to purchase intention. 5. The function of the e-commerce recommendation system interferes in religious beliefs especially the degree of religious belief that influence on online funeral products. In conclusion, the study also provides managerial implications and suggestions for researchers; otherwise, this study not only launched online marketing of funeral products, but also expect to provide essentially suggestions and results in using e-commerce platforms and recommendation systems for businesses who work for funeral.

參考文獻


一、 期刊
王俐涵,陳宗天,2018,「推薦系統之研究內涵與主要研究議題」,Electronic Commerce Studies,2018年夏季第十六卷,二期,頁161-188。
朱心怡,2011,「從〈父後七日〉看臺灣的喪葬習俗」,朝陽科技大學通識教育中心, 2011年06月止善,十期,頁15-34。
吳肇銘,2008,「以消費者購買決策階段為基礎之適性化推薦系統設計與績效之研究」,資訊管理展望,2008年第10卷,第二期,頁19-43。
林青峰、楊亨利,2018,「應用網路評價的功能商品推薦系統」,中華民國資訊管理學報,第二十五卷,第三期,頁335-362。

延伸閱讀