臺灣以高科技產業為經濟發展重心,大多廠商透過輪班型態的方式安排員工班表以維持廠區全天24小時的作業,而輪班造成的生心理健康危害已被多項研究證實。本研究收集北部某高科技廠200名勞工疲勞及睡眠品質調查問卷、血液檢驗及腕帶式穿戴式裝置之心率測值,不但評估上述各變項之相關性,並探索應用穿戴式裝置可能鑑別之生理資訊,成果可應用於強化勞工健康管理。 於2017年北部某一高科技廠招募25歲至60歲勞工(100名輪班與100名非輪班),收集個案之個人疲勞強度量表(Checklist Individual Strength questionnaire, CIS)及匹茲堡睡眠品質量表(Pittsburgh Sleep Quality Index, PSQI)以了解研究個案之疲勞及睡眠品質情形,並同時進行血壓量測與抽血檢驗,項目包含收縮壓、舒張壓、血氧濃度、飯前血糖、總膽固醇、三酸甘油脂、高密度脂蛋白膽固醇、低密度脂蛋白膽固醇、高敏感度C反應性蛋白、N端前腦利鈉肽檢驗項目。心率指標包含靜息心率(Resting Heart Rate)與睡眠心率變異數,則透過連續配戴五日穿戴式裝置進行數據收集,靜息心率越低代表健康程度越佳。使用敘述性統計、機率密度圖、統計檢定(雙樣本T檢定與Mann-Whitney U檢定)、皮爾森相關性分析、廣義線性模式以及廣義估計方程式探討與心率指標相關之因子。 結果顯示本研究調查族群承受較差的疲勞狀況(輪班平均值為75.95,標準差為6.82分;非輪班平均值為75.06,標準差為7.11分)與睡眠品質(輪班平均值為7.38,標準差為2.92分;非輪班平均值為7.12,標準差為2.75分)。廣義線性模型顯示工作日靜息心率與總膽固醇達顯著正相關(估計值為0.15,p= 0.012),工作日睡眠心率變異數與飯前血糖達顯著負相關(估計值為-0.012,p= 0.039)。廣義估計方程式顯示經過至少一日休息後的心率指標變化:靜息心率方面發現女性的變化量顯著高於男性(估計值為-0.086,p= 0.023),且靜息心率變化量與三酸甘油脂(估計值為<0.001,p= 0.060)及N端前腦利鈉肽(估計值為-0.002,p< 0.001)達顯著相關;睡眠心率變異數方面,其變化量與高敏感度C反應性蛋白(估計值為0.758,p= 0.007)、PSQI(估計值為-0.052,p= 0.031)及收縮壓(估計值為-0.014,p= 0.021)達顯著相關。 本研究發現可應用穿戴式裝置量測心率計算靜息心率與睡眠心率變異數,兩者與勞工嚴重疲勞、總膽固醇、飯前血糖、舒張壓、三酸甘油脂、高敏感度C反應性蛋白之概況具有相關性存在,可據此應用於勞工日常自主健康監控管理。本研究亦發現勞工若有睡眠品質差、血壓高、血糖高、低密度脂蛋白膽固醇較高及N端前腦利鈉肽較高之情形,則應重視並安排常規休息日,以期降低職場危害發生。
Shift works in a 24-hour a day schedule are common in high-tech industries in Taiwan. Many studies have found adverse health effects associated with shift work. This study, to enhance the occupational health management, aims to analyze the associations among fatigue, sleep quality, blood parameters, heart rate from questionnaires, blood test, wristband wearable device from 200 high-tech workers in Northern Taiwan, moreover, to explore the application of wearable device to monitor the physiological information. This study recruited 200 subjects aged from 25 to 60 years old from a high-tech industry in northern Taiwan (100 shift workers and 100 non-shift workers) in 2017. Checklist Individual Strength questionnaire (CIS) and Pittsburgh Sleep Quality Index (PSQI) were adopted to evaluate the fatigue and sleep quality condition. The blood pressures and parameters were collected including systolic and diastolic blood pressures, blood oxygen, fasting blood glucose, total cholesterol, triglyceride, high density lipoprotein (HDL), low density lipoprotein (LDL), high-sensitivity C-reactive protein (hs-CRP), and N-terminal pro-brain natriuretic peptide (NT-pro-BNP). The heart rates were measured for consecutive 5 days by wearing wearable device, and daily resting heart rate (RHR) and variance of sleeping heart rate were used as indicators of heart rate variability. Lower RHR represents a better health condition. Descriptive statistics, probability density map, statistical tests (two sample t-test and Mann-Whitney U test), Pearson’s correlation, generalized linear model, and generalized estimating equation were used to evaluate the factors related to heart rates. The results showed all study subjects have poor fatigue level (shift workers: mean: 75.95, standard deviation (SD): 6.82); non-shift workers: mean: 75.06, SD: 7.11) and poor sleep quality (shift workers: mean: 7.38, SD: 2.92); non-shift workers: mean: 7.12, SD: 2.75). Generalized linear model showed that RHR in working day was associated with total cholesterol (estimate: 0.15, p= 0.012), and variance of sleeping heart rate in working day was associated with fasting blood glucose (estimate: -0.012, p= 0.039). Generalized estimating equation showed that after at least a day off, the changes of RHR is higher for female subjects than that for male cases (estimate: -0.086, p= 0.023), and associated with triglyceride (estimate: <0.001, p= 0.060) and NT-pro-BNP (estimate: -0.002, p< 0.001). For the changes of variance of sleeping heart rate, it was associated with hs-CRP (estimate: 0.758, p= 0.007), PSQI (estimate: -0.052, p= 0.031), and systolic blood pressure (estimate: -0.014, p= 0.021). This study found that RHR and variance of sleeping heart rate measured from wearable device were associated with the general situation of fatigue, total cholesterol, fating blood glucose, diastolic blood pressure, triglyceride and hs-CRP that could be applied to manage the occupational health. In addition, this study recommends management should comply with the regulated day-off rules for labors whom with poor sleep quality, higher blood pressure, higher blood glucose, higher LDL and higher NT-pro-BNP, to decrease the potential occupational health risk.