透過您的圖書館登入
IP:18.223.112.172
  • 學位論文

線性混合模型的分析方法

Mixed Effect Models Analysis

指導教授 : 鄭子韋

摘要


傳統的統計軟體在分析線性模型,要檢定因子是否顯著時,皆是對誤差均方除,但是在巢狀與裂區設計,就並非如此。所以在做檢定因子是否顯著時,必須要先判定設計和宣告檢定,才能做出正確檢定,但是在現今有新的的方法,只要判斷設計和因子的效果是固定還是隨機的,不用宣告檢定,就能直接做出正確的檢定。 在本篇論文研究中,在分析巢狀及裂區設計的資料時,使用四種不同 的程式去分析資料,和兩種不同的估計法,最大概似法與限制最大概似法估計參數。 最後使用兩筆設計的資料,學生的成績和稻米的產量,來看傳統方法 與新方法之間的差別。

並列摘要


When the traditional statistical software is analyzing a linear models, testing whether the factor is significant, all divided by mean squares error, but nested and split plot design are not. So while testing whether the factor is significant or not, we must judge the design and declare test statement, in order to make the correct test. But now there is a new package, as long as determine the design and the judgment of the effect of the factor is fixed or random and there is no need to declare test statement, we can directly make the correct test. In this paper, four different programs are used to analyze the data of the nested and split plot design, and two different estimation methods for the maximum likelihood method and the restricted maximum likelihood method are used to estimate the parameters. Finally, we use the data of the two designs, the student’s grades and the rice yield, to see the differences between the traditional package and the new package.

參考文獻


1. Anderson, V.L. and Mclean, R.A. (1974) Design of Experiments A realistic Approach, Marcel Dekker, Inc.
2. Armstrong, R.A. (2013) Statistical Guidelines for the Analysis of Data Obtained from One or Both Eyes, Opthalmic & Physiological Optics ,Vol. 33, pp.7-14.
4. Crawley, M.J. (2007) The R book , John Wiley & Sons, Ltd.
7. Federer, W.T. and King, F. (2007) Variations on Split Plot and Split Block Experiment Designs , John Wiley & Sons, Inc.
8. Gullberg, R.G. (2008) Employing Components-of-Variance to Evaluate Rorensic, Breath Test Instruments, Science and Justice, Vol. 48, pp. 2-7.

延伸閱讀