3D列印現今已廣泛應用於生活中各領域,其中在醫療領域上更備受重視。有別於傳統的線材列印,該領域多使用顆粒狀生物相容性材料的熔融沉積式列印機台。然而,若料桶內部存在材料熔化不均 之情況,則列印可能產生噴頭堵塞、擠出不均等錯誤。因此,本論文將透過可視化實驗及數值模擬,分析驗證列印料桶內部 相變化 材料的加熱及熔化情形,並探討不同材料、加熱溫度、導熱結構及其幾何配置對熱熔趨勢之影響。 由分析之結果首先發現,由於相變材料之物理性質(熱傳導係數、黏滯係數)差異影響其在料桶中內 傳熱方式,導致各材料之熔化趨勢與最終熔化區域各不相同。其次,改變料桶的加熱溫度只對總熔化時間產生變化,但對於整體熔化趨勢並無太大影響。最終,透過加入導熱結構以期能提升熱熔效率。從模擬結果發現,固定式導熱柱可將熱更快傳導至材料內部,對低黏度材料具有縮短對流路徑之效果,對於高黏度材料則有縮短傳導距離之影響,且相比於基礎純料桶模型最高可節省PEG-PCL材料10.21%熱熔時間。此外,由於不同相變材料之最終熔化區域相異,因而調整導熱柱角度將顯著改變總熱熔時間。最佳角度之導熱柱不僅能 有效地將高溫傳至未熔化區,並能提供最高21.73%的 熱熔 時間節省比。另一方面,本論文根據上述結果 設計出可調式導熱結構,該結構可根據不同材料進行擺放位置優化。其中,由實驗及模擬結果可得知,可調式導熱結構可分別為Lauric-acid及PEG-PCL分別提供24.97%和29.58%的熱熔時間節省比。相較於固定式導熱柱,可調式導熱結構更能提升熱熔效率,並根據不同材料進行即時最佳化,以降低列印成本及風險。
3D printing is now widely used in various fields of life, and it is especially valued in the medical field. Unlike traditional filament printing, this field often uses fused deposition modeling (FDM) machines with granular biocompatible materials. However, if the material inside the barrel melts unevenly, it can cause errors such as nozzle clogging and uneven extrusion. Therefore, this paper will analyze and verify the heating and melting conditions of phase-change materials inside the printing barrel through visual experiments and numerical simulations, and explore the effects of different materials, heating temperatures, thermal conductivity structures, and their geometric configurations on the thermal melting trends. The analysis results reveal that due to differences in the physical properties of phase-change materials (such as thermal conductivity and viscosity), the heat transfer methods within the barrel vary, leading to different melting trends and final melting regions for each material. Secondly, changing the heating temperature of the barrel only affects the total melting time, but has little impact on the overall melting trend. Finally, the introduction of thermal conductive structures aims to improve thermal melting efficiency. Simulation results show that fixed thermal conductive rods can conduct heat to the material's interior more quickly. For low-viscosity materials, this shortens the convection path, while for high-viscosity materials, it shortens the conduction distance. Compared to the basic pure barrel model, this method can save up to 10.21% of the thermal melting time for PEG-PCL materials. Additionally, since the final melting regions of different phase-change materials differ, adjusting the angle of the thermal conductive rods significantly changes the total thermal melting time. Optimal angled thermal conductive rods can effectively transfer heat to unmelted areas, providing up to 21.73% savings in thermal melting time. Furthermore, this paper designs an adjustable thermal conductive structure based on the aforementioned results, which can be optimized for different materials. Experimental and simulation results show that the adjustable thermal conductive structure can provide 24.97% and 29.58% savings in thermal melting time for lauric acid and PEG-PCL, respectively. Compared to fixed thermal conductive rods, the adjustable thermal conductive structure enhances thermal melting efficiency more effectively, allowing real-time optimization based on different materials to reduce printing costs and risks.