本研究針對笛卡爾式機械手臂提出振動抑制控制法,期望以調整 S 曲線速度命令 以軌跡控制的方式降低由高速運轉狀態急停時,避免激發自然頻率而產生之共振現象。 此研究以模態測試與有限元素法獲取笛卡爾式取出機械手臂之模態參數,並建立機械 手臂有限元素模型和動態模型,以PC-based為控制系統架構,調整 S 曲線 (S-curve) 加減速控制法進行笛卡爾式機械手臂的位置控制,透過調整加速度的變化和馬達轉速, 使機械手臂移動軌跡平滑化,控制馬達旋轉之頻率掠過機械結構之特徵頻率以減少共 振激發的可能,藉此實現抑制振動的效果。本研究以MATLAB進行位置控制的模擬與 計算,並以 Visual Code 開發系統控制器,將此控制系統導入機械手臂進行測試,以驗 證振動抑制系統效果。實驗結果顯示機械手臂於3000 rpm急停至零速(zero speed)狀 態時產生之振動量與原始系統比較,於總振動量降低30 ~ 44 %,並於系統自然頻率附 近之振動量降低 3 ~ 28 % ,證實本研究之振動抑制法可降低振動量且提升笛卡爾式機 械手臂於高速運轉狀態下之穩定性。
This study proposes a vibration suppression control method by calibrating with modal parameters of the Cartesian robot series from HI-MORE Corporation, obtained through experimental and finite element methods, to establish a dynamic model of the robot. The system, structured with a PC-based architecture, utilizes S-curve acceleration for Cartesian robot position control simulation. By adjusting the acceleration variations and motor speed, the robot's trajectory is smoothed. The control of motor rotation frequency slightly surpasses the natural frequency of the mechanical structure to reduce the possibility of resonance excitation, thereby achieving vibration suppression. The simulation and computation of position control are conducted with Matlab, while system controllers are developed in Visual Studio Code. This control system is then applied to the robot for testing, and simulation and experimentation are conducted to validate the effectiveness of the vibration suppression system. It has been verified more stability. that S-curve speed control can suppress 30 % to 44 % of vibrations across the full frequency range and 3 % to 28 % of vibrations within the 8 to 30 Hz range. This is dedicated to the instant slow down when approaching the target coordinate from 3000 rpm, allowing the system to gain